Compare commits

..

8 Commits

Author SHA1 Message Date
Phil Wang
5d4c798949 cleanup sepvit 2022-03-31 14:35:11 -07:00
Phil Wang
d65a742efe intent to build (#210)
complete SepViT, from bytedance AI labs
2022-03-31 14:30:23 -07:00
Phil Wang
8c54e01492 do not layernorm on last transformer block for scalable vit, as there is already one in mlp head 2022-03-31 13:25:21 -07:00
Phil Wang
df656fe7c7 complete learnable memory ViT, for efficient fine-tuning and potentially plays into continual learning 2022-03-31 09:51:12 -07:00
Phil Wang
4e6a42a0ca correct need for post-attention dropout 2022-03-30 10:50:57 -07:00
Phil Wang
6d7298d8ad link to tensorflow2 translation by @taki0112 2022-03-28 09:05:34 -07:00
Phil Wang
9cd56ff29b CCT allow for rectangular images 2022-03-26 14:02:49 -07:00
Phil Wang
2aae406ce8 add proposed parallel vit from facebook ai for exploration purposes 2022-03-23 10:42:35 -07:00
27 changed files with 900 additions and 40 deletions

210
README.md
View File

@@ -19,6 +19,7 @@
- [CrossFormer](#crossformer)
- [RegionViT](#regionvit)
- [ScalableViT](#scalablevit)
- [SepViT](#sepvit)
- [NesT](#nest)
- [MobileViT](#mobilevit)
- [Masked Autoencoder](#masked-autoencoder)
@@ -27,6 +28,8 @@
- [Adaptive Token Sampling](#adaptive-token-sampling)
- [Patch Merger](#patch-merger)
- [Vision Transformer for Small Datasets](#vision-transformer-for-small-datasets)
- [Parallel ViT](#parallel-vit)
- [Learnable Memory ViT](#learnable-memory-vit)
- [Dino](#dino)
- [Accessing Attention](#accessing-attention)
- [Research Ideas](#research-ideas)
@@ -44,6 +47,8 @@ For a Pytorch implementation with pretrained models, please see Ross Wightman's
The official Jax repository is <a href="https://github.com/google-research/vision_transformer">here</a>.
A tensorflow2 translation also exists <a href="https://github.com/taki0112/vit-tensorflow">here</a>, created by research scientist <a href="https://github.com/taki0112">Junho Kim</a>! 🙏
## Install
```bash
@@ -240,6 +245,7 @@ preds = v(img) # (1, 1000)
```
## CCT
<img src="https://raw.githubusercontent.com/SHI-Labs/Compact-Transformers/main/images/model_sym.png" width="400px"></img>
<a href="https://arxiv.org/abs/2104.05704">CCT</a> proposes compact transformers
@@ -251,22 +257,25 @@ You can use this with two methods
import torch
from vit_pytorch.cct import CCT
model = CCT(
img_size=224,
embedding_dim=384,
n_conv_layers=2,
kernel_size=7,
stride=2,
padding=3,
pooling_kernel_size=3,
pooling_stride=2,
pooling_padding=1,
num_layers=14,
num_heads=6,
mlp_radio=3.,
num_classes=1000,
positional_embedding='learnable', # ['sine', 'learnable', 'none']
)
cct = CCT(
img_size = (224, 448),
embedding_dim = 384,
n_conv_layers = 2,
kernel_size = 7,
stride = 2,
padding = 3,
pooling_kernel_size = 3,
pooling_stride = 2,
pooling_padding = 1,
num_layers = 14,
num_heads = 6,
mlp_radio = 3.,
num_classes = 1000,
positional_embedding = 'learnable', # ['sine', 'learnable', 'none']
)
img = torch.randn(1, 3, 224, 448)
pred = cct(img) # (1, 1000)
```
Alternatively you can use one of several pre-defined models `[2,4,6,7,8,14,16]`
@@ -277,23 +286,23 @@ and the embedding dimension.
import torch
from vit_pytorch.cct import cct_14
model = cct_14(
img_size=224,
n_conv_layers=1,
kernel_size=7,
stride=2,
padding=3,
pooling_kernel_size=3,
pooling_stride=2,
pooling_padding=1,
num_classes=1000,
positional_embedding='learnable', # ['sine', 'learnable', 'none']
)
cct = cct_14(
img_size = 224,
n_conv_layers = 1,
kernel_size = 7,
stride = 2,
padding = 3,
pooling_kernel_size = 3,
pooling_stride = 2,
pooling_padding = 1,
num_classes = 1000,
positional_embedding = 'learnable', # ['sine', 'learnable', 'none']
)
```
<a href="https://github.com/SHI-Labs/Compact-Transformers">Official
Repository</a> includes links to pretrained model checkpoints.
## Cross ViT
<img src="./images/cross_vit.png" width="400px"></img>
@@ -551,13 +560,42 @@ model = ScalableViT(
reduction_factor = (8, 4, 2, 1), # downsampling of the key / values in SSA. in the paper, this was represented as (reduction_factor ** -2)
window_size = (64, 32, None, None), # window size of the IWSA at each stage. None means no windowing needed
dropout = 0.1, # attention and feedforward dropout
).cuda()
)
img = torch.randn(1, 3, 256, 256).cuda()
img = torch.randn(1, 3, 256, 256)
preds = model(img) # (1, 1000)
```
## SepViT
<img src="./images/sep-vit.png" width="400px"></img>
Another <a href="https://arxiv.org/abs/2203.15380">Bytedance AI paper</a>, it proposes a depthwise-pointwise self-attention layer that seems largely inspired by mobilenet's depthwise-separable convolution. The most interesting aspect is the reuse of the feature map from the depthwise self-attention stage as the values for the pointwise self-attention, as shown in the diagram above.
I have decided to include only the version of `SepViT` with this specific self-attention layer, as the grouped attention layers are not remarkable nor novel, and the authors were not clear on how they treated the window tokens for the group self-attention layer. Besides, it seems like with `DSSA` layer alone, they were able to beat Swin.
ex. SepViT-Lite
```python
import torch
from vit_pytorch.sep_vit import SepViT
v = SepViT(
num_classes = 1000,
dim = 32, # dimensions of first stage, which doubles every stage (32, 64, 128, 256) for SepViT-Lite
dim_head = 32, # attention head dimension
heads = (1, 2, 4, 8), # number of heads per stage
depth = (1, 2, 6, 2), # number of transformer blocks per stage
window_size = 7, # window size of DSS Attention block
dropout = 0.1 # dropout
)
img = torch.randn(1, 3, 224, 224)
preds = v(img) # (1, 1000)
```
## NesT
<img src="./images/nest.png" width="400px"></img>
@@ -866,6 +904,92 @@ img = torch.randn(4, 3, 256, 256)
tokens = spt(img) # (4, 256, 1024)
```
## Parallel ViT
<img src="./images/parallel-vit.png" width="350px"></img>
This <a href="https://arxiv.org/abs/2203.09795">paper</a> propose parallelizing multiple attention and feedforward blocks per layer (2 blocks), claiming that it is easier to train without loss of performance.
You can try this variant as follows
```python
import torch
from vit_pytorch.parallel_vit import ViT
v = ViT(
image_size = 256,
patch_size = 16,
num_classes = 1000,
dim = 1024,
depth = 6,
heads = 8,
mlp_dim = 2048,
num_parallel_branches = 2, # in paper, they claimed 2 was optimal
dropout = 0.1,
emb_dropout = 0.1
)
img = torch.randn(4, 3, 256, 256)
preds = v(img) # (4, 1000)
```
## Learnable Memory ViT
<img src="./images/learnable-memory-vit.png" width="350px"></img>
This <a href="https://arxiv.org/abs/2203.15243">paper</a> shows that adding learnable memory tokens at each layer of a vision transformer can greatly enhance fine-tuning results (in addition to learnable task specific CLS token and adapter head).
You can use this with a specially modified `ViT` as follows
```python
import torch
from vit_pytorch.learnable_memory_vit import ViT, Adapter
# normal base ViT
v = ViT(
image_size = 256,
patch_size = 16,
num_classes = 1000,
dim = 1024,
depth = 6,
heads = 8,
mlp_dim = 2048,
dropout = 0.1,
emb_dropout = 0.1
)
img = torch.randn(4, 3, 256, 256)
logits = v(img) # (4, 1000)
# do your usual training with ViT
# ...
# then, to finetune, just pass the ViT into the Adapter class
# you can do this for multiple Adapters, as shown below
adapter1 = Adapter(
vit = v,
num_classes = 2, # number of output classes for this specific task
num_memories_per_layer = 5 # number of learnable memories per layer, 10 was sufficient in paper
)
logits1 = adapter1(img) # (4, 2) - predict 2 classes off frozen ViT backbone with learnable memories and task specific head
# yet another task to finetune on, this time with 4 classes
adapter2 = Adapter(
vit = v,
num_classes = 4,
num_memories_per_layer = 10
)
logits2 = adapter2(img) # (4, 4) - predict 4 classes off frozen ViT backbone with learnable memories and task specific head
```
## Dino
<img src="./images/dino.png" width="350px"></img>
@@ -1396,6 +1520,30 @@ Coming from computer vision and new to transformers? Here are some resources tha
}
```
```bibtex
@inproceedings{Touvron2022ThreeTE,
title = {Three things everyone should know about Vision Transformers},
author = {Hugo Touvron and Matthieu Cord and Alaaeldin El-Nouby and Jakob Verbeek and Herv'e J'egou},
year = {2022}
}
```
```bibtex
@inproceedings{Sandler2022FinetuningIT,
title = {Fine-tuning Image Transformers using Learnable Memory},
author = {Mark Sandler and Andrey Zhmoginov and Max Vladymyrov and Andrew Jackson},
year = {2022}
}
```
```bibtex
@inproceedings{Li2022SepViTSV,
title = {SepViT: Separable Vision Transformer},
author = {Wei Li and Xing Wang and Xin Xia and Jie Wu and Xuefeng Xiao and Minghang Zheng and Shiping Wen},
year = {2022}
}
```
```bibtex
@misc{vaswani2017attention,
title = {Attention Is All You Need},

Binary file not shown.

After

Width:  |  Height:  |  Size: 108 KiB

BIN
images/parallel-vit.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

BIN
images/sep-vit.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 142 KiB

View File

@@ -3,7 +3,7 @@ from setuptools import setup, find_packages
setup(
name = 'vit-pytorch',
packages = find_packages(exclude=['examples']),
version = '0.28.2',
version = '0.32.1',
license='MIT',
description = 'Vision Transformer (ViT) - Pytorch',
author = 'Phil Wang',

View File

@@ -139,6 +139,8 @@ class Attention(nn.Module):
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.output_num_tokens = output_num_tokens
@@ -163,6 +165,7 @@ class Attention(nn.Module):
dots = dots.masked_fill(~dots_mask, mask_value)
attn = self.attend(dots)
attn = self.dropout(attn)
sampled_token_ids = None

View File

@@ -76,6 +76,7 @@ class Attention(nn.Module):
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.mix_heads_pre_attn = nn.Parameter(torch.randn(heads, heads))
self.mix_heads_post_attn = nn.Parameter(torch.randn(heads, heads))
@@ -96,7 +97,10 @@ class Attention(nn.Module):
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
dots = einsum('b h i j, h g -> b g i j', dots, self.mix_heads_pre_attn) # talking heads, pre-softmax
attn = self.attend(dots)
attn = self.dropout(attn)
attn = einsum('b h i j, h g -> b g i j', attn, self.mix_heads_post_attn) # talking heads, post-softmax
out = einsum('b h i j, b h j d -> b h i d', attn, v)

View File

@@ -2,7 +2,13 @@ import torch
import torch.nn as nn
import torch.nn.functional as F
# Pre-defined CCT Models
# helpers
def pair(t):
return t if isinstance(t, tuple) else (t, t)
# CCT Models
__all__ = ['cct_2', 'cct_4', 'cct_6', 'cct_7', 'cct_8', 'cct_14', 'cct_16']
@@ -55,8 +61,8 @@ def _cct(num_layers, num_heads, mlp_ratio, embedding_dim,
padding=padding,
*args, **kwargs)
# modules
# Modules
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, attention_dropout=0.1, projection_dropout=0.1):
super().__init__()
@@ -308,6 +314,7 @@ class CCT(nn.Module):
pooling_padding=1,
*args, **kwargs):
super(CCT, self).__init__()
img_height, img_width = pair(img_size)
self.tokenizer = Tokenizer(n_input_channels=n_input_channels,
n_output_channels=embedding_dim,
@@ -324,8 +331,8 @@ class CCT(nn.Module):
self.classifier = TransformerClassifier(
sequence_length=self.tokenizer.sequence_length(n_channels=n_input_channels,
height=img_size,
width=img_size),
height=img_height,
width=img_width),
embedding_dim=embedding_dim,
seq_pool=True,
dropout_rate=0.,
@@ -336,4 +343,3 @@ class CCT(nn.Module):
def forward(self, x):
x = self.tokenizer(x)
return self.classifier(x)

View File

@@ -48,6 +48,8 @@ class Attention(nn.Module):
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_q = nn.Linear(dim, inner_dim, bias = False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
@@ -69,6 +71,7 @@ class Attention(nn.Module):
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')

View File

@@ -95,6 +95,9 @@ class Attention(nn.Module):
self.window_size = window_size
self.norm = LayerNorm(dim)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Conv2d(dim, inner_dim * 3, 1, bias = False)
self.to_out = nn.Conv2d(inner_dim, dim, 1)
@@ -151,6 +154,7 @@ class Attention(nn.Module):
# attend
attn = sim.softmax(dim = -1)
attn = self.dropout(attn)
# merge heads

View File

@@ -76,6 +76,7 @@ class Attention(nn.Module):
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_q = DepthWiseConv2d(dim, inner_dim, proj_kernel, padding = padding, stride = 1, bias = False)
self.to_kv = DepthWiseConv2d(dim, inner_dim * 2, proj_kernel, padding = padding, stride = kv_proj_stride, bias = False)
@@ -94,6 +95,7 @@ class Attention(nn.Module):
dots = einsum('b i d, b j d -> b i j', q, k) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = einsum('b i j, b j d -> b i d', attn, v)
out = rearrange(out, '(b h) (x y) d -> b (h d) x y', h = h, y = y)

View File

@@ -42,6 +42,8 @@ class Attention(nn.Module):
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.dropout = nn.Dropout(dropout)
self.reattn_weights = nn.Parameter(torch.randn(heads, heads))
self.reattn_norm = nn.Sequential(
@@ -64,6 +66,7 @@ class Attention(nn.Module):
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
attn = dots.softmax(dim=-1)
attn = self.dropout(attn)
# re-attention

View File

@@ -0,0 +1,216 @@
import torch
from torch import nn
import torch.nn.functional as F
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
# helpers
def exists(val):
return val is not None
def pair(t):
return t if isinstance(t, tuple) else (t, t)
# controlling freezing of layers
def set_module_requires_grad_(module, requires_grad):
for param in module.parameters():
param.requires_grad = requires_grad
def freeze_all_layers_(module):
set_module_requires_grad_(module, False)
def unfreeze_all_layers_(module):
set_module_requires_grad_(module, True)
# classes
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_q = nn.Linear(dim, inner_dim, bias = False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x, attn_mask = None, memories = None):
x = self.norm(x)
x_kv = x # input for key / values projection
if exists(memories):
# add memories to key / values if it is passed in
memories = repeat(memories, 'n d -> b n d', b = x.shape[0]) if memories.ndim == 2 else memories
x_kv = torch.cat((x_kv, memories), dim = 1)
qkv = (self.to_q(x), *self.to_kv(x_kv).chunk(2, dim = -1))
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
if exists(attn_mask):
dots = dots.masked_fill(~attn_mask, -torch.finfo(dots.dtype).max)
attn = self.attend(dots)
attn = self.dropout(attn)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout),
FeedForward(dim, mlp_dim, dropout = dropout)
]))
def forward(self, x, attn_mask = None, memories = None):
for ind, (attn, ff) in enumerate(self.layers):
layer_memories = memories[ind] if exists(memories) else None
x = attn(x, attn_mask = attn_mask, memories = layer_memories) + x
x = ff(x) + x
return x
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_height // patch_height) * (image_width // patch_width)
patch_dim = channels * patch_height * patch_width
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
nn.Linear(patch_dim, dim),
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def img_to_tokens(self, img):
x = self.to_patch_embedding(img)
cls_tokens = repeat(self.cls_token, '1 n d -> b n d', b = x.shape[0])
x = torch.cat((cls_tokens, x), dim = 1)
x += self.pos_embedding
x = self.dropout(x)
return x
def forward(self, img):
x = self.img_to_tokens(img)
x = self.transformer(x)
cls_tokens = x[:, 0]
return self.mlp_head(cls_tokens)
# adapter with learnable memories per layer, memory CLS token, and learnable adapter head
class Adapter(nn.Module):
def __init__(
self,
*,
vit,
num_memories_per_layer = 10,
num_classes = 2,
):
super().__init__()
assert isinstance(vit, ViT)
# extract some model variables needed
dim = vit.cls_token.shape[-1]
layers = len(vit.transformer.layers)
num_patches = vit.pos_embedding.shape[-2]
self.vit = vit
# freeze ViT backbone - only memories will be finetuned
freeze_all_layers_(vit)
# learnable parameters
self.memory_cls_token = nn.Parameter(torch.randn(dim))
self.memories_per_layer = nn.Parameter(torch.randn(layers, num_memories_per_layer, dim))
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
# specialized attention mask to preserve the output of the original ViT
# it allows the memory CLS token to attend to all other tokens (and the learnable memory layer tokens), but not vice versa
attn_mask = torch.ones((num_patches, num_patches), dtype = torch.bool)
attn_mask = F.pad(attn_mask, (1, num_memories_per_layer), value = False) # main tokens cannot attend to learnable memories per layer
attn_mask = F.pad(attn_mask, (0, 0, 1, 0), value = True) # memory CLS token can attend to everything
self.register_buffer('attn_mask', attn_mask)
def forward(self, img):
b = img.shape[0]
tokens = self.vit.img_to_tokens(img)
# add task specific memory tokens
memory_cls_tokens = repeat(self.memory_cls_token, 'd -> b 1 d', b = b)
tokens = torch.cat((memory_cls_tokens, tokens), dim = 1)
# pass memories along with image tokens through transformer for attending
out = self.vit.transformer(tokens, memories = self.memories_per_layer, attn_mask = self.attn_mask)
# extract memory CLS tokens
memory_cls_tokens = out[:, 0]
# pass through task specific adapter head
return self.mlp_head(memory_cls_tokens)

View File

@@ -52,6 +52,7 @@ class Attention(nn.Module):
self.to_v = nn.Sequential(nn.Conv2d(dim, inner_dim_value, 1, bias = False), nn.BatchNorm2d(inner_dim_value))
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
out_batch_norm = nn.BatchNorm2d(dim_out)
nn.init.zeros_(out_batch_norm.weight)
@@ -100,6 +101,7 @@ class Attention(nn.Module):
dots = self.apply_pos_bias(dots)
attn = self.attend(dots)
attn = self.dropout(attn)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h (x y) d -> b (h d) x y', h = h, y = y)

View File

@@ -78,6 +78,7 @@ class Attention(nn.Module):
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
@@ -93,6 +94,7 @@ class Attention(nn.Module):
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')

View File

@@ -54,6 +54,8 @@ class Attention(nn.Module):
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim=-1)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)
self.to_out = nn.Sequential(
@@ -67,7 +69,10 @@ class Attention(nn.Module):
t, 'b p n (h d) -> b p h n d', h=self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = torch.matmul(attn, v)
out = rearrange(out, 'b p h n d -> b p n (h d)')
return self.to_out(out)

View File

@@ -55,6 +55,7 @@ class Attention(nn.Module):
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Conv2d(dim, inner_dim * 3, 1, bias = False)
self.to_out = nn.Sequential(
@@ -71,6 +72,7 @@ class Attention(nn.Module):
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h (x y) d -> b (h d) x y', x = h, y = w)

140
vit_pytorch/parallel_vit.py Normal file
View File

@@ -0,0 +1,140 @@
import torch
from torch import nn
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
# helpers
def pair(t):
return t if isinstance(t, tuple) else (t, t)
# classes
class Parallel(nn.Module):
def __init__(self, *fns):
super().__init__()
self.fns = nn.ModuleList(fns)
def forward(self, x):
return sum([fn(x) for fn in self.fns])
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
) if project_out else nn.Identity()
def forward(self, x):
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, num_parallel_branches = 2, dropout = 0.):
super().__init__()
self.layers = nn.ModuleList([])
attn_block = lambda: PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout))
ff_block = lambda: PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
for _ in range(depth):
self.layers.append(nn.ModuleList([
Parallel(*[attn_block() for _ in range(num_parallel_branches)]),
Parallel(*[ff_block() for _ in range(num_parallel_branches)]),
]))
def forward(self, x):
for attns, ffs in self.layers:
x = attns(x) + x
x = ffs(x) + x
return x
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', num_parallel_branches = 2, channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_height // patch_height) * (image_width // patch_width)
patch_dim = channels * patch_height * patch_width
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
nn.Linear(patch_dim, dim),
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, num_parallel_branches, dropout)
self.pool = pool
self.to_latent = nn.Identity()
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def forward(self, img):
x = self.to_patch_embedding(img)
b, n, _ = x.shape
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding[:, :(n + 1)]
x = self.dropout(x)
x = self.transformer(x)
x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]
x = self.to_latent(x)
return self.mlp_head(x)

View File

@@ -48,6 +48,7 @@ class Attention(nn.Module):
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
@@ -63,6 +64,7 @@ class Attention(nn.Module):
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')

View File

@@ -61,8 +61,13 @@ class Attention(nn.Module):
inner_dim = dim_head * heads
self.norm = nn.LayerNorm(dim)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Linear(inner_dim, dim)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x, rel_pos_bias = None):
h = self.heads
@@ -86,6 +91,7 @@ class Attention(nn.Module):
sim = sim + rel_pos_bias
attn = sim.softmax(dim = -1)
attn = self.dropout(attn)
# merge heads

View File

@@ -104,6 +104,7 @@ class Attention(nn.Module):
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.use_ds_conv = use_ds_conv
@@ -148,6 +149,7 @@ class Attention(nn.Module):
dots = einsum('b i d, b j d -> b i j', q, k) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = einsum('b i j, b j d -> b i d', attn, v)
out = rearrange(out, '(b h) n d -> b n (h d)', h = h)

View File

@@ -90,6 +90,7 @@ class ScalableSelfAttention(nn.Module):
self.heads = heads
self.scale = dim_key ** -0.5
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_q = nn.Conv2d(dim, dim_key * heads, 1, bias = False)
self.to_k = nn.Conv2d(dim, dim_key * heads, reduction_factor, stride = reduction_factor, bias = False)
@@ -116,6 +117,7 @@ class ScalableSelfAttention(nn.Module):
# attention
attn = self.attend(dots)
attn = self.dropout(attn)
# aggregate values
@@ -141,6 +143,7 @@ class InteractiveWindowedSelfAttention(nn.Module):
self.scale = dim_key ** -0.5
self.window_size = window_size
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.local_interactive_module = nn.Conv2d(dim_value * heads, dim_value * heads, 3, padding = 1)
@@ -176,6 +179,7 @@ class InteractiveWindowedSelfAttention(nn.Module):
# attention
attn = self.attend(dots)
attn = self.dropout(attn)
# aggregate values
@@ -280,7 +284,7 @@ class ScalableViT(nn.Module):
is_last = ind == (num_stages - 1)
self.layers.append(nn.ModuleList([
Transformer(dim = layer_dim, depth = layer_depth, heads = layer_heads, ff_expansion_factor = ff_expansion_factor, dropout = dropout, ssa_dim_key = layer_ssa_dim_key, ssa_dim_value = layer_ssa_dim_value, ssa_reduction_factor = layer_ssa_reduction_factor, iwsa_dim_key = layer_iwsa_dim_key, iwsa_dim_value = layer_iwsa_dim_value, iwsa_window_size = layer_window_size),
Transformer(dim = layer_dim, depth = layer_depth, heads = layer_heads, ff_expansion_factor = ff_expansion_factor, dropout = dropout, ssa_dim_key = layer_ssa_dim_key, ssa_dim_value = layer_ssa_dim_value, ssa_reduction_factor = layer_ssa_reduction_factor, iwsa_dim_key = layer_iwsa_dim_key, iwsa_dim_value = layer_iwsa_dim_value, iwsa_window_size = layer_window_size, norm_output = not is_last),
Downsample(layer_dim, layer_dim * 2) if not is_last else None
]))

294
vit_pytorch/sep_vit.py Normal file
View File

@@ -0,0 +1,294 @@
from functools import partial
import torch
from torch import nn, einsum
from einops import rearrange, repeat
from einops.layers.torch import Rearrange, Reduce
# helpers
def cast_tuple(val, length = 1):
return val if isinstance(val, tuple) else ((val,) * length)
# helper classes
class ChanLayerNorm(nn.Module):
def __init__(self, dim, eps = 1e-5):
super().__init__()
self.eps = eps
self.g = nn.Parameter(torch.ones(1, dim, 1, 1))
self.b = nn.Parameter(torch.zeros(1, dim, 1, 1))
def forward(self, x):
var = torch.var(x, dim = 1, unbiased = False, keepdim = True)
mean = torch.mean(x, dim = 1, keepdim = True)
return (x - mean) / (var + self.eps).sqrt() * self.g + self.b
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = ChanLayerNorm(dim)
self.fn = fn
def forward(self, x):
return self.fn(self.norm(x))
class OverlappingPatchEmbed(nn.Module):
def __init__(self, dim_in, dim_out, stride = 2):
super().__init__()
kernel_size = stride * 2 - 1
padding = kernel_size // 2
self.conv = nn.Conv2d(dim_in, dim_out, kernel_size, stride = stride, padding = padding)
def forward(self, x):
return self.conv(x)
class PEG(nn.Module):
def __init__(self, dim, kernel_size = 3):
super().__init__()
self.proj = nn.Conv2d(dim, dim, kernel_size = kernel_size, padding = kernel_size // 2, groups = dim, stride = 1)
def forward(self, x):
return self.proj(x) + x
# feedforward
class FeedForward(nn.Module):
def __init__(self, dim, mult = 4, dropout = 0.):
super().__init__()
inner_dim = int(dim * mult)
self.net = nn.Sequential(
nn.Conv2d(dim, inner_dim, 1),
nn.GELU(),
nn.Dropout(dropout),
nn.Conv2d(inner_dim, dim, 1),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
# attention
class DSSA(nn.Module):
def __init__(
self,
dim,
heads = 8,
dim_head = 32,
dropout = 0.,
window_size = 7
):
super().__init__()
self.heads = heads
self.scale = dim_head ** -0.5
self.window_size = window_size
inner_dim = dim_head * heads
self.attend = nn.Sequential(
nn.Softmax(dim = -1),
nn.Dropout(dropout)
)
self.to_qkv = nn.Conv1d(dim, inner_dim * 3, 1, bias = False)
# window tokens
self.window_tokens = nn.Parameter(torch.randn(dim))
# prenorm and non-linearity for window tokens
# then projection to queries and keys for window tokens
self.window_tokens_to_qk = nn.Sequential(
nn.LayerNorm(dim_head),
nn.GELU(),
Rearrange('b h n c -> b (h c) n'),
nn.Conv1d(inner_dim, inner_dim * 2, 1, groups = heads),
Rearrange('b (h c) n -> b h n c', h = heads),
)
# window attention
self.window_attend = nn.Sequential(
nn.Softmax(dim = -1),
nn.Dropout(dropout)
)
self.to_out = nn.Sequential(
nn.Conv2d(inner_dim, dim, 1),
nn.Dropout(dropout)
)
def forward(self, x):
"""
einstein notation
b - batch
c - channels
w1 - window size (height)
w2 - also window size (width)
i - sequence dimension (source)
j - sequence dimension (target dimension to be reduced)
h - heads
x - height of feature map divided by window size
y - width of feature map divided by window size
"""
batch, height, width, heads, wsz = x.shape[0], *x.shape[-2:], self.heads, self.window_size
assert (height % wsz) == 0 and (width % wsz) == 0, f'height {height} and width {width} must be divisible by window size {wsz}'
num_windows = (height // wsz) * (width // wsz)
# fold in windows for "depthwise" attention - not sure why it is named depthwise when it is just "windowed" attention
x = rearrange(x, 'b c (h w1) (w w2) -> (b h w) c (w1 w2)', w1 = wsz, w2 = wsz)
# add windowing tokens
w = repeat(self.window_tokens, 'c -> b c 1', b = x.shape[0])
x = torch.cat((w, x), dim = -1)
# project for queries, keys, value
q, k, v = self.to_qkv(x).chunk(3, dim = 1)
# split out heads
q, k, v = map(lambda t: rearrange(t, 'b (h d) ... -> b h (...) d', h = heads), (q, k, v))
# scale
q = q * self.scale
# similarity
dots = einsum('b h i d, b h j d -> b h i j', q, k)
# attention
attn = self.attend(dots)
# aggregate values
out = torch.matmul(attn, v)
# split out windowed tokens
window_tokens, windowed_fmaps = out[:, :, 0], out[:, :, 1:]
# early return if there is only 1 window
if num_windows == 1:
fmap = rearrange(windowed_fmaps, '(b x y) h (w1 w2) d -> b (h d) (x w1) (y w2)', x = height // wsz, y = width // wsz, w1 = wsz, w2 = wsz)
return self.to_out(fmap)
# carry out the pointwise attention, the main novelty in the paper
window_tokens = rearrange(window_tokens, '(b x y) h d -> b h (x y) d', x = height // wsz, y = width // wsz)
windowed_fmaps = rearrange(windowed_fmaps, '(b x y) h n d -> b h (x y) n d', x = height // wsz, y = width // wsz)
# windowed queries and keys (preceded by prenorm activation)
w_q, w_k = self.window_tokens_to_qk(window_tokens).chunk(2, dim = -1)
# scale
w_q = w_q * self.scale
# similarities
w_dots = einsum('b h i d, b h j d -> b h i j', w_q, w_k)
w_attn = self.window_attend(w_dots)
# aggregate the feature maps from the "depthwise" attention step (the most interesting part of the paper, one i haven't seen before)
aggregated_windowed_fmap = einsum('b h i j, b h j w d -> b h i w d', w_attn, windowed_fmaps)
# fold back the windows and then combine heads for aggregation
fmap = rearrange(aggregated_windowed_fmap, 'b h (x y) (w1 w2) d -> b (h d) (x w1) (y w2)', x = height // wsz, y = width // wsz, w1 = wsz, w2 = wsz)
return self.to_out(fmap)
class Transformer(nn.Module):
def __init__(
self,
dim,
depth,
dim_head = 32,
heads = 8,
ff_mult = 4,
dropout = 0.,
norm_output = True
):
super().__init__()
self.layers = nn.ModuleList([])
for ind in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, DSSA(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
PreNorm(dim, FeedForward(dim, mult = ff_mult, dropout = dropout)),
]))
self.norm = ChanLayerNorm(dim) if norm_output else nn.Identity()
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return self.norm(x)
class SepViT(nn.Module):
def __init__(
self,
*,
num_classes,
dim,
depth,
heads,
window_size = 7,
dim_head = 32,
ff_mult = 4,
channels = 3,
dropout = 0.
):
super().__init__()
assert isinstance(depth, tuple), 'depth needs to be tuple if integers indicating number of transformer blocks at that stage'
num_stages = len(depth)
dims = tuple(map(lambda i: (2 ** i) * dim, range(num_stages)))
dims = (channels, *dims)
dim_pairs = tuple(zip(dims[:-1], dims[1:]))
strides = (4, *((2,) * (num_stages - 1)))
hyperparams_per_stage = [heads, window_size]
hyperparams_per_stage = list(map(partial(cast_tuple, length = num_stages), hyperparams_per_stage))
assert all(tuple(map(lambda arr: len(arr) == num_stages, hyperparams_per_stage)))
self.layers = nn.ModuleList([])
for ind, ((layer_dim_in, layer_dim), layer_depth, layer_stride, layer_heads, layer_window_size) in enumerate(zip(dim_pairs, depth, strides, *hyperparams_per_stage)):
is_last = ind == (num_stages - 1)
self.layers.append(nn.ModuleList([
OverlappingPatchEmbed(layer_dim_in, layer_dim, stride = layer_stride),
PEG(layer_dim),
Transformer(dim = layer_dim, depth = layer_depth, heads = layer_heads, ff_mult = ff_mult, dropout = dropout, norm_output = not is_last),
]))
self.mlp_head = nn.Sequential(
Reduce('b d h w -> b d', 'mean'),
nn.LayerNorm(dims[-1]),
nn.Linear(dims[-1], num_classes)
)
def forward(self, x):
for ope, peg, transformer in self.layers:
x = ope(x)
x = peg(x)
x = transformer(x)
return self.mlp_head(x)

View File

@@ -130,6 +130,8 @@ class GlobalAttention(nn.Module):
self.to_q = nn.Conv2d(dim, inner_dim, 1, bias = False)
self.to_kv = nn.Conv2d(dim, inner_dim * 2, k, stride = k, bias = False)
self.dropout = nn.Dropout(dropout)
self.to_out = nn.Sequential(
nn.Conv2d(inner_dim, dim, 1),
nn.Dropout(dropout)
@@ -145,6 +147,7 @@ class GlobalAttention(nn.Module):
dots = einsum('b i d, b j d -> b i j', q, k) * self.scale
attn = dots.softmax(dim = -1)
attn = self.dropout(attn)
out = einsum('b i j, b j d -> b i d', attn, v)
out = rearrange(out, '(b h) (x y) d -> b (h d) x y', h = h, y = y)

View File

@@ -42,6 +42,8 @@ class Attention(nn.Module):
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
@@ -56,6 +58,7 @@ class Attention(nn.Module):
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
@@ -111,7 +114,7 @@ class ViT(nn.Module):
x = self.to_patch_embedding(img)
b, n, _ = x.shape
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
cls_tokens = repeat(self.cls_token, '1 n d -> b n d', b = b)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding[:, :(n + 1)]
x = self.dropout(x)

View File

@@ -42,6 +42,8 @@ class LSA(nn.Module):
self.temperature = nn.Parameter(torch.log(torch.tensor(dim_head ** -0.5)))
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
@@ -60,6 +62,7 @@ class LSA(nn.Module):
dots = dots.masked_fill(mask, mask_value)
attn = self.attend(dots)
attn = self.dropout(attn)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')

View File

@@ -63,6 +63,8 @@ class Attention(nn.Module):
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
@@ -77,6 +79,7 @@ class Attention(nn.Module):
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')