Compare commits

...

76 Commits

Author SHA1 Message Date
Phil Wang
035aa4fc0b 1.7.8 2024-08-21 07:07:40 -07:00
Phil Wang
bed48b5912 fix tests
fix tests
2024-08-20 15:35:04 -07:00
lucidrains
73199ab486 Nested navit (#325)
add a variant of NaViT using nested tensors
2024-08-20 15:12:29 -07:00
Phil Wang
4f22eae631 1.7.5 2024-08-07 08:46:18 -07:00
Phil Wang
dfc8df6713 add the u-vit implementation with simple vit + register tokens 2024-08-07 08:45:57 -07:00
lucidrains
9992a615d1 attention re-use in lookup vit should use pre-softmax attention matrix 2024-07-19 19:23:38 -07:00
Phil Wang
4b2c00cb63 when cross attending in look vit, make sure context tokens are normalized 2024-07-19 10:23:12 -07:00
Phil Wang
ec6c48b8ff norm not needed when reusing attention in lookvit 2024-07-19 10:00:03 -07:00
Phil Wang
547bf94d07 1.7.1 2024-07-19 09:49:44 -07:00
Phil Wang
bd72b58355 add lookup vit, cite, document later 2024-07-19 09:48:58 -07:00
lucidrains
e3256d77cd fix t2t vit having two layernorms, and make final layernorm in distillation wrapper configurable, default to False for vit 2024-06-11 15:12:53 -07:00
lucidrains
90be7233a3 rotary needs to be done with full precision to be safe 2024-05-11 08:04:32 -07:00
Phil Wang
bca88e9039 address https://github.com/lucidrains/vit-pytorch/issues/300 2024-05-02 08:46:39 -07:00
Phil Wang
96f66d2754 address https://github.com/lucidrains/vit-pytorch/issues/306 2024-04-18 09:44:29 -07:00
Phil Wang
12249dcc5f address https://github.com/lucidrains/vit-pytorch/issues/304 2024-04-17 09:40:03 -07:00
SOUMYADIP MAL
8b8da8dede Update setup.py (#303) 2024-04-17 08:21:30 -07:00
lucidrains
5578ac472f address https://github.com/lucidrains/vit-pytorch/issues/292 2023-12-23 08:11:39 -08:00
lucidrains
d446a41243 share an idea that should be tried if it has not been 2023-11-14 16:55:36 -08:00
lucidrains
0ad09c4cbc allow channels to be customizable for cvt 2023-10-25 14:47:58 -07:00
Phil Wang
92b69321f4 1.6.2 2023-10-24 12:47:38 -07:00
Artem Lukin
fb4ac25174 Fix typo in LayerNorm (#285)
Co-authored-by: Artem Lukin <artyom.lukin98@gmail.com>
2023-10-24 12:47:21 -07:00
lucidrains
53fe345e85 no longer needed with einops 0.7 2023-10-19 18:16:46 -07:00
Phil Wang
efb94608ea readme 2023-10-19 09:38:35 -07:00
lucidrains
51310d1d07 add xcit diagram 2023-10-13 09:18:12 -07:00
Phil Wang
1616288e30 add xcit (#284)
* add xcit

* use Rearrange layers

* give cross correlation transformer a final norm at end

* document
2023-10-13 09:15:13 -07:00
Jason Chou
9e1e824385 Update README.md (#283)
`patch_size` is size of patches, not number of patches
2023-10-09 11:33:56 -07:00
lucidrains
bbb24e34d4 give a learned bias to and from registers for maxvit + register token variant 2023-10-06 10:40:26 -07:00
lucidrains
df8733d86e improvise a max vit with register tokens 2023-10-06 10:27:36 -07:00
lucidrains
680d446e46 document in readme later 2023-10-03 09:26:02 -07:00
lucidrains
3fdb8dd352 fix pypi 2023-10-01 08:14:20 -07:00
lucidrains
a36546df23 add simple vit with register tokens example, cite 2023-10-01 08:11:40 -07:00
lucidrains
d830b05f06 address https://github.com/lucidrains/vit-pytorch/issues/279 2023-09-10 09:32:57 -07:00
Phil Wang
8208c859a5 just remove PreNorm wrapper from all ViTs, as it is unlikely to change at this point 2023-08-14 09:48:55 -07:00
Phil Wang
4264efd906 1.4.2 2023-08-14 07:59:35 -07:00
Phil Wang
b194359301 add a simple vit with qknorm, since authors seem to be promoting the technique on twitter 2023-08-14 07:58:45 -07:00
lucidrains
950c901b80 fix linear head in simple vit, thanks to @atkos 2023-08-10 14:36:21 -07:00
Phil Wang
3e5d1be6f0 address https://github.com/lucidrains/vit-pytorch/pull/274 2023-08-09 07:53:38 -07:00
Phil Wang
6e2393de95 wrap up NaViT 2023-07-25 10:38:55 -07:00
Phil Wang
32974c33df one can pass a callback to token_dropout_prob for NaViT that takes in height and width and calculate appropriate dropout rate 2023-07-24 14:52:40 -07:00
Phil Wang
17675e0de4 add constant token dropout for NaViT 2023-07-24 14:14:36 -07:00
Phil Wang
598cffab53 release NaViT 2023-07-24 13:55:54 -07:00
Phil Wang
23820bc54a begin work on NaViT (#273)
finish core idea of NaViT
2023-07-24 13:54:02 -07:00
Phil Wang
e9ca1f4d57 1.2.5 2023-07-24 06:43:24 -07:00
roydenwa
d4daf7bd0f Support SimpleViT as encoder in MAE (#272)
support simplevit in mae
2023-07-24 06:43:01 -07:00
Phil Wang
9e3fec2398 fix mpp 2023-06-28 08:02:43 -07:00
Phil Wang
ce4bcd08fb address https://github.com/lucidrains/vit-pytorch/issues/266 2023-05-20 08:24:49 -07:00
Phil Wang
ad4ca19775 enforce latest einops 2023-05-08 09:34:14 -07:00
Phil Wang
e1b08c15b9 fix tests 2023-03-19 10:52:47 -07:00
Phil Wang
c59843d7b8 add a version of simple vit using flash attention 2023-03-18 09:41:39 -07:00
lucidrains
9a8e509b27 separate a simple vit from mp3, so that simple vit can be used after being pretrained 2023-03-07 19:31:10 -08:00
Phil Wang
258dd8c7c6 release mp3, contributed by @Vishu26 2023-03-07 14:29:45 -08:00
Srikumar Sastry
4218556acd Add Masked Position Prediction (#260)
* Create mp3.py

* Implementation: Position Prediction as an Effective Pretraining Strategy

* Added description for Masked Position Prediction

* MP3 image added
2023-03-07 14:28:40 -08:00
Phil Wang
f621c2b041 typo 2023-03-04 20:30:02 -08:00
Phil Wang
5699ed7d13 double down on dual patch norm, fix MAE and Simmim to be compatible with dual patchnorm 2023-02-10 10:39:50 -08:00
Phil Wang
46dcaf23d8 seeing a signal with dual patchnorm in another repository, fully incorporate 2023-02-06 09:45:12 -08:00
Phil Wang
bdaf2d1491 adopt dual patchnorm paper for as many vit as applicable, release 1.0.0 2023-02-03 08:11:29 -08:00
Phil Wang
500e23105a need simple vit with patch dropout for another project 2022-12-05 10:47:36 -08:00
Phil Wang
89e1996c8b add vit with patch dropout, fully embrace structured dropout as multiple papers are now corroborating each other 2022-12-02 11:28:11 -08:00
Phil Wang
2f87c0cf8f offer 1d versions, in light of https://arxiv.org/abs/2211.14730 2022-12-01 10:31:05 -08:00
Phil Wang
59c8948c6a try to fix tests 2022-10-29 11:44:17 -07:00
Phil Wang
cb6d749821 add a 3d version of cct, addressing https://github.com/lucidrains/vit-pytorch/issues/238 0.38.1 2022-10-29 11:35:06 -07:00
Phil Wang
6ec8fdaa6d make sure global average pool can be used for vivit in place of cls token 2022-10-24 19:59:48 -07:00
Phil Wang
13fabf901e add vivit 2022-10-24 09:34:04 -07:00
Ryan Russell
c0eb4c0150 Improving Readability (#220)
Signed-off-by: Ryan Russell <git@ryanrussell.org>

Signed-off-by: Ryan Russell <git@ryanrussell.org>
2022-10-17 10:42:45 -07:00
Phil Wang
5f1a6a05e9 release updated mae where one can more easily visualize reconstructions, thanks to @Vishu26 2022-10-17 10:41:46 -07:00
Srikumar Sastry
9a95e7904e Update mae.py (#242)
update mae so decoded tokens can be easily reshaped back to visualize the reconstruction
2022-10-17 10:41:10 -07:00
Phil Wang
b4853d39c2 add the 3d simple vit 2022-10-16 20:45:30 -07:00
Phil Wang
29fbf0aff4 begin extending some of the architectures over to 3d, starting with basic ViT 2022-10-16 15:31:59 -07:00
Phil Wang
4b8f5bc900 add link to Flax translation by @conceptofmind 2022-07-27 08:58:18 -07:00
Phil Wang
f86e052c05 offer way for extractor to return latents without detaching them 2022-07-16 16:22:40 -07:00
Phil Wang
2fa2b62def slightly more clear of einops rearrange for cls token, for https://github.com/lucidrains/vit-pytorch/issues/224 2022-06-30 08:11:17 -07:00
Phil Wang
9f87d1c43b follow @arquolo feedback and advice for MaxViT 2022-06-29 08:53:09 -07:00
Phil Wang
2c6dd7010a fix hidden dimension in MaxViT thanks to @arquolo 2022-06-24 23:28:35 -07:00
Phil Wang
6460119f65 be able to accept a reference to a layer within the model for forward hooking and extracting the embedding output, for regionvit to work with extractor 2022-06-19 08:22:18 -07:00
Phil Wang
4e62e5f05e make extractor flexible for layers that output multiple tensors, show CrossViT example 2022-06-19 08:11:41 -07:00
Phil Wang
b3e90a2652 add simple vit, from https://arxiv.org/abs/2205.01580 2022-05-03 20:24:14 -07:00
59 changed files with 5411 additions and 383 deletions

View File

@@ -1,11 +1,16 @@
# This workflows will upload a Python Package using Twine when a release is created
# This workflow will upload a Python Package using Twine when a release is created
# For more information see: https://help.github.com/en/actions/language-and-framework-guides/using-python-with-github-actions#publishing-to-package-registries
# This workflow uses actions that are not certified by GitHub.
# They are provided by a third-party and are governed by
# separate terms of service, privacy policy, and support
# documentation.
name: Upload Python Package
on:
release:
types: [created]
types: [published]
jobs:
deploy:
@@ -21,11 +26,11 @@ jobs:
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install setuptools wheel twine
- name: Build and publish
env:
TWINE_USERNAME: ${{ secrets.PYPI_USERNAME }}
TWINE_PASSWORD: ${{ secrets.PYPI_PASSWORD }}
run: |
python setup.py sdist bdist_wheel
twine upload dist/*
pip install build
- name: Build package
run: python -m build
- name: Publish package
uses: pypa/gh-action-pypi-publish@27b31702a0e7fc50959f5ad993c78deac1bdfc29
with:
user: __token__
password: ${{ secrets.PYPI_API_TOKEN }}

View File

@@ -15,7 +15,7 @@ jobs:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: [3.7, 3.8, 3.9]
python-version: [3.8, 3.9]
steps:
- uses: actions/checkout@v2
@@ -27,6 +27,8 @@ jobs:
run: |
python -m pip install --upgrade pip
python -m pip install pytest
python -m pip install wheel
python -m pip install torch==2.4.0 torchvision==0.19.0 --index-url https://download.pytorch.org/whl/cpu
if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
- name: Test with pytest
run: |

459
README.md
View File

@@ -6,6 +6,8 @@
- [Install](#install)
- [Usage](#usage)
- [Parameters](#parameters)
- [Simple ViT](#simple-vit)
- [NaViT](#navit)
- [Distillation](#distillation)
- [Deep ViT](#deep-vit)
- [CaiT](#cait)
@@ -23,12 +25,16 @@
- [MaxViT](#maxvit)
- [NesT](#nest)
- [MobileViT](#mobilevit)
- [XCiT](#xcit)
- [Masked Autoencoder](#masked-autoencoder)
- [Simple Masked Image Modeling](#simple-masked-image-modeling)
- [Masked Patch Prediction](#masked-patch-prediction)
- [Masked Position Prediction](#masked-position-prediction)
- [Adaptive Token Sampling](#adaptive-token-sampling)
- [Patch Merger](#patch-merger)
- [Vision Transformer for Small Datasets](#vision-transformer-for-small-datasets)
- [3D Vit](#3d-vit)
- [ViVit](#vivit)
- [Parallel ViT](#parallel-vit)
- [Learnable Memory ViT](#learnable-memory-vit)
- [Dino](#dino)
@@ -51,6 +57,8 @@ The official Jax repository is <a href="https://github.com/google-research/visio
A tensorflow2 translation also exists <a href="https://github.com/taki0112/vit-tensorflow">here</a>, created by research scientist <a href="https://github.com/taki0112">Junho Kim</a>! 🙏
<a href="https://github.com/conceptofmind/vit-flax">Flax translation</a> by <a href="https://github.com/conceptofmind">Enrico Shippole</a>!
## Install
```bash
@@ -85,7 +93,7 @@ preds = v(img) # (1, 1000)
- `image_size`: int.
Image size. If you have rectangular images, make sure your image size is the maximum of the width and height
- `patch_size`: int.
Number of patches. `image_size` must be divisible by `patch_size`.
Size of patches. `image_size` must be divisible by `patch_size`.
The number of patches is: ` n = (image_size // patch_size) ** 2` and `n` **must be greater than 16**.
- `num_classes`: int.
Number of classes to classify.
@@ -106,6 +114,122 @@ Embedding dropout rate.
- `pool`: string, either `cls` token pooling or `mean` pooling
## Simple ViT
<a href="https://arxiv.org/abs/2205.01580">An update</a> from some of the same authors of the original paper proposes simplifications to `ViT` that allows it to train faster and better.
Among these simplifications include 2d sinusoidal positional embedding, global average pooling (no CLS token), no dropout, batch sizes of 1024 rather than 4096, and use of RandAugment and MixUp augmentations. They also show that a simple linear at the end is not significantly worse than the original MLP head
You can use it by importing the `SimpleViT` as shown below
```python
import torch
from vit_pytorch import SimpleViT
v = SimpleViT(
image_size = 256,
patch_size = 32,
num_classes = 1000,
dim = 1024,
depth = 6,
heads = 16,
mlp_dim = 2048
)
img = torch.randn(1, 3, 256, 256)
preds = v(img) # (1, 1000)
```
## NaViT
<img src="./images/navit.png" width="450px"></img>
<a href="https://arxiv.org/abs/2307.06304">This paper</a> proposes to leverage the flexibility of attention and masking for variable lengthed sequences to train images of multiple resolution, packed into a single batch. They demonstrate much faster training and improved accuracies, with the only cost being extra complexity in the architecture and dataloading. They use factorized 2d positional encodings, token dropping, as well as query-key normalization.
You can use it as follows
```python
import torch
from vit_pytorch.na_vit import NaViT
v = NaViT(
image_size = 256,
patch_size = 32,
num_classes = 1000,
dim = 1024,
depth = 6,
heads = 16,
mlp_dim = 2048,
dropout = 0.1,
emb_dropout = 0.1,
token_dropout_prob = 0.1 # token dropout of 10% (keep 90% of tokens)
)
# 5 images of different resolutions - List[List[Tensor]]
# for now, you'll have to correctly place images in same batch element as to not exceed maximum allowed sequence length for self-attention w/ masking
images = [
[torch.randn(3, 256, 256), torch.randn(3, 128, 128)],
[torch.randn(3, 128, 256), torch.randn(3, 256, 128)],
[torch.randn(3, 64, 256)]
]
preds = v(images) # (5, 1000) - 5, because 5 images of different resolution above
```
Or if you would rather that the framework auto group the images into variable lengthed sequences that do not exceed a certain max length
```python
images = [
torch.randn(3, 256, 256),
torch.randn(3, 128, 128),
torch.randn(3, 128, 256),
torch.randn(3, 256, 128),
torch.randn(3, 64, 256)
]
preds = v(
images,
group_images = True,
group_max_seq_len = 64
) # (5, 1000)
```
Finally, if you would like to make use of a flavor of NaViT using <a href="https://pytorch.org/tutorials/prototype/nestedtensor.html">nested tensors</a> (which will omit a lot of the masking and padding altogether), make sure you are on version `2.4` and import as follows
```python
import torch
from vit_pytorch.na_vit_nested_tensor import NaViT
v = NaViT(
image_size = 256,
patch_size = 32,
num_classes = 1000,
dim = 1024,
depth = 6,
heads = 16,
mlp_dim = 2048,
dropout = 0.,
emb_dropout = 0.,
token_dropout_prob = 0.1
)
# 5 images of different resolutions - List[Tensor]
images = [
torch.randn(3, 256, 256), torch.randn(3, 128, 128),
torch.randn(3, 128, 256), torch.randn(3, 256, 128),
torch.randn(3, 64, 256)
]
preds = v(images)
assert preds.shape == (5, 1000)
```
## Distillation
<img src="./images/distill.png" width="300px"></img>
@@ -271,7 +395,7 @@ cct = CCT(
pooling_padding = 1,
num_layers = 14,
num_heads = 6,
mlp_radio = 3.,
mlp_ratio = 3.,
num_classes = 1000,
positional_embedding = 'learnable', # ['sine', 'learnable', 'none']
)
@@ -633,7 +757,7 @@ preds = v(img) # (2, 1000)
<img src="./images/nest.png" width="400px"></img>
This <a href="https://arxiv.org/abs/2105.12723">paper</a> decided to process the image in hierarchical stages, with attention only within tokens of local blocks, which aggregate as it moves up the heirarchy. The aggregation is done in the image plane, and contains a convolution and subsequent maxpool to allow it to pass information across the boundary.
This <a href="https://arxiv.org/abs/2105.12723">paper</a> decided to process the image in hierarchical stages, with attention only within tokens of local blocks, which aggregate as it moves up the hierarchy. The aggregation is done in the image plane, and contains a convolution and subsequent maxpool to allow it to pass information across the boundary.
You can use it with the following code (ex. NesT-T)
@@ -647,7 +771,7 @@ nest = NesT(
dim = 96,
heads = 3,
num_hierarchies = 3, # number of hierarchies
block_repeats = (2, 2, 8), # the number of transformer blocks at each heirarchy, starting from the bottom
block_repeats = (2, 2, 8), # the number of transformer blocks at each hierarchy, starting from the bottom
num_classes = 1000
)
@@ -681,6 +805,38 @@ img = torch.randn(1, 3, 256, 256)
pred = mbvit_xs(img) # (1, 1000)
```
## XCiT
<img src="./images/xcit.png" width="400px"></img>
This <a href="https://arxiv.org/abs/2106.09681">paper</a> introduces the cross covariance attention (abbreviated XCA). One can think of it as doing attention across the features dimension rather than the spatial one (another perspective would be a dynamic 1x1 convolution, the kernel being attention map defined by spatial correlations).
Technically, this amounts to simply transposing the query, key, values before executing cosine similarity attention with learned temperature.
```python
import torch
from vit_pytorch.xcit import XCiT
v = XCiT(
image_size = 256,
patch_size = 32,
num_classes = 1000,
dim = 1024,
depth = 12, # depth of xcit transformer
cls_depth = 2, # depth of cross attention of CLS tokens to patch, attention pool at end
heads = 16,
mlp_dim = 2048,
dropout = 0.1,
emb_dropout = 0.1,
layer_dropout = 0.05, # randomly dropout 5% of the layers
local_patch_kernel_size = 3 # kernel size of the local patch interaction module (depthwise convs)
)
img = torch.randn(1, 3, 256, 256)
preds = v(img) # (1, 1000)
```
## Simple Masked Image Modeling
<img src="./images/simmim.png" width="400px"/>
@@ -812,6 +968,44 @@ for _ in range(100):
torch.save(model.state_dict(), './pretrained-net.pt')
```
## Masked Position Prediction
<img src="./images/mp3.png" width="400px"></img>
New <a href="https://arxiv.org/abs/2207.07611">paper</a> that introduces masked position prediction pre-training criteria. This strategy is more efficient than the Masked Autoencoder strategy and has comparable performance.
```python
import torch
from vit_pytorch.mp3 import ViT, MP3
v = ViT(
num_classes = 1000,
image_size = 256,
patch_size = 8,
dim = 1024,
depth = 6,
heads = 8,
mlp_dim = 2048,
dropout = 0.1,
)
mp3 = MP3(
vit = v,
masking_ratio = 0.75
)
images = torch.randn(8, 3, 256, 256)
loss = mp3(images)
loss.backward()
# that's all!
# do the above in a for loop many times with a lot of images and your vision transformer will learn
# save your improved vision transformer
torch.save(v.state_dict(), './trained-vit.pt')
```
## Adaptive Token Sampling
<img src="./images/ats.png" width="400px"></img>
@@ -937,6 +1131,117 @@ img = torch.randn(4, 3, 256, 256)
tokens = spt(img) # (4, 256, 1024)
```
## 3D ViT
By popular request, I will start extending a few of the architectures in this repository to 3D ViTs, for use with video, medical imaging, etc.
You will need to pass in two additional hyperparameters: (1) the number of frames `frames` and (2) patch size along the frame dimension `frame_patch_size`
For starters, 3D ViT
```python
import torch
from vit_pytorch.vit_3d import ViT
v = ViT(
image_size = 128, # image size
frames = 16, # number of frames
image_patch_size = 16, # image patch size
frame_patch_size = 2, # frame patch size
num_classes = 1000,
dim = 1024,
depth = 6,
heads = 8,
mlp_dim = 2048,
dropout = 0.1,
emb_dropout = 0.1
)
video = torch.randn(4, 3, 16, 128, 128) # (batch, channels, frames, height, width)
preds = v(video) # (4, 1000)
```
3D Simple ViT
```python
import torch
from vit_pytorch.simple_vit_3d import SimpleViT
v = SimpleViT(
image_size = 128, # image size
frames = 16, # number of frames
image_patch_size = 16, # image patch size
frame_patch_size = 2, # frame patch size
num_classes = 1000,
dim = 1024,
depth = 6,
heads = 8,
mlp_dim = 2048
)
video = torch.randn(4, 3, 16, 128, 128) # (batch, channels, frames, height, width)
preds = v(video) # (4, 1000)
```
3D version of <a href="https://github.com/lucidrains/vit-pytorch#cct">CCT</a>
```python
import torch
from vit_pytorch.cct_3d import CCT
cct = CCT(
img_size = 224,
num_frames = 8,
embedding_dim = 384,
n_conv_layers = 2,
frame_kernel_size = 3,
kernel_size = 7,
stride = 2,
padding = 3,
pooling_kernel_size = 3,
pooling_stride = 2,
pooling_padding = 1,
num_layers = 14,
num_heads = 6,
mlp_ratio = 3.,
num_classes = 1000,
positional_embedding = 'learnable'
)
video = torch.randn(1, 3, 8, 224, 224) # (batch, channels, frames, height, width)
pred = cct(video)
```
## ViViT
<img src="./images/vivit.png" width="350px"></img>
This <a href="https://arxiv.org/abs/2103.15691">paper</a> offers 3 different types of architectures for efficient attention of videos, with the main theme being factorizing the attention across space and time. This repository will offer the first variant, which is a spatial transformer followed by a temporal one.
```python
import torch
from vit_pytorch.vivit import ViT
v = ViT(
image_size = 128, # image size
frames = 16, # number of frames
image_patch_size = 16, # image patch size
frame_patch_size = 2, # frame patch size
num_classes = 1000,
dim = 1024,
spatial_depth = 6, # depth of the spatial transformer
temporal_depth = 6, # depth of the temporal transformer
heads = 8,
mlp_dim = 2048
)
video = torch.randn(4, 3, 16, 128, 128) # (batch, channels, frames, height, width)
preds = v(video) # (4, 1000)
```
## Parallel ViT
<img src="./images/parallel-vit.png" width="350px"></img>
@@ -1227,6 +1532,47 @@ logits, embeddings = v(img)
embeddings # (1, 65, 1024) - (batch x patches x model dim)
```
Or say for `CrossViT`, which has a multi-scale encoder that outputs two sets of embeddings for 'large' and 'small' scales
```python
import torch
from vit_pytorch.cross_vit import CrossViT
v = CrossViT(
image_size = 256,
num_classes = 1000,
depth = 4,
sm_dim = 192,
sm_patch_size = 16,
sm_enc_depth = 2,
sm_enc_heads = 8,
sm_enc_mlp_dim = 2048,
lg_dim = 384,
lg_patch_size = 64,
lg_enc_depth = 3,
lg_enc_heads = 8,
lg_enc_mlp_dim = 2048,
cross_attn_depth = 2,
cross_attn_heads = 8,
dropout = 0.1,
emb_dropout = 0.1
)
# wrap the CrossViT
from vit_pytorch.extractor import Extractor
v = Extractor(v, layer_name = 'multi_scale_encoder') # take embedding coming from the output of multi-scale-encoder
# forward pass now returns predictions and the attention maps
img = torch.randn(1, 3, 256, 256)
logits, embeddings = v(img)
# there is one extra token due to the CLS token
embeddings # ((1, 257, 192), (1, 17, 384)) - (batch x patches x dimension) <- large and small scales respectively
```
## Research Ideas
### Efficient Attention
@@ -1669,6 +2015,56 @@ Coming from computer vision and new to transformers? Here are some resources tha
}
```
```bibtex
@misc{Beyer2022BetterPlainViT
title = {Better plain ViT baselines for ImageNet-1k},
author = {Beyer, Lucas and Zhai, Xiaohua and Kolesnikov, Alexander},
publisher = {arXiv},
year = {2022}
}
```
```bibtex
@article{Arnab2021ViViTAV,
title = {ViViT: A Video Vision Transformer},
author = {Anurag Arnab and Mostafa Dehghani and Georg Heigold and Chen Sun and Mario Lucic and Cordelia Schmid},
journal = {2021 IEEE/CVF International Conference on Computer Vision (ICCV)},
year = {2021},
pages = {6816-6826}
}
```
```bibtex
@article{Liu2022PatchDropoutEV,
title = {PatchDropout: Economizing Vision Transformers Using Patch Dropout},
author = {Yue Liu and Christos Matsoukas and Fredrik Strand and Hossein Azizpour and Kevin Smith},
journal = {ArXiv},
year = {2022},
volume = {abs/2208.07220}
}
```
```bibtex
@misc{https://doi.org/10.48550/arxiv.2302.01327,
doi = {10.48550/ARXIV.2302.01327},
url = {https://arxiv.org/abs/2302.01327},
author = {Kumar, Manoj and Dehghani, Mostafa and Houlsby, Neil},
title = {Dual PatchNorm},
publisher = {arXiv},
year = {2023},
copyright = {Creative Commons Attribution 4.0 International}
}
```
```bibtex
@inproceedings{Dehghani2023PatchNP,
title = {Patch n' Pack: NaViT, a Vision Transformer for any Aspect Ratio and Resolution},
author = {Mostafa Dehghani and Basil Mustafa and Josip Djolonga and Jonathan Heek and Matthias Minderer and Mathilde Caron and Andreas Steiner and Joan Puigcerver and Robert Geirhos and Ibrahim M. Alabdulmohsin and Avital Oliver and Piotr Padlewski and Alexey A. Gritsenko and Mario Luvci'c and Neil Houlsby},
year = {2023}
}
```
```bibtex
@misc{vaswani2017attention,
title = {Attention Is All You Need},
@@ -1680,4 +2076,59 @@ Coming from computer vision and new to transformers? Here are some resources tha
}
```
```bibtex
@inproceedings{dao2022flashattention,
title = {Flash{A}ttention: Fast and Memory-Efficient Exact Attention with {IO}-Awareness},
author = {Dao, Tri and Fu, Daniel Y. and Ermon, Stefano and Rudra, Atri and R{\'e}, Christopher},
booktitle = {Advances in Neural Information Processing Systems},
year = {2022}
}
```
```bibtex
@inproceedings{Darcet2023VisionTN,
title = {Vision Transformers Need Registers},
author = {Timoth'ee Darcet and Maxime Oquab and Julien Mairal and Piotr Bojanowski},
year = {2023},
url = {https://api.semanticscholar.org/CorpusID:263134283}
}
```
```bibtex
@inproceedings{ElNouby2021XCiTCI,
title = {XCiT: Cross-Covariance Image Transformers},
author = {Alaaeldin El-Nouby and Hugo Touvron and Mathilde Caron and Piotr Bojanowski and Matthijs Douze and Armand Joulin and Ivan Laptev and Natalia Neverova and Gabriel Synnaeve and Jakob Verbeek and Herv{\'e} J{\'e}gou},
booktitle = {Neural Information Processing Systems},
year = {2021},
url = {https://api.semanticscholar.org/CorpusID:235458262}
}
```
```bibtex
@inproceedings{Koner2024LookupViTCV,
title = {LookupViT: Compressing visual information to a limited number of tokens},
author = {Rajat Koner and Gagan Jain and Prateek Jain and Volker Tresp and Sujoy Paul},
year = {2024},
url = {https://api.semanticscholar.org/CorpusID:271244592}
}
```
```bibtex
@article{Bao2022AllAW,
title = {All are Worth Words: A ViT Backbone for Diffusion Models},
author = {Fan Bao and Shen Nie and Kaiwen Xue and Yue Cao and Chongxuan Li and Hang Su and Jun Zhu},
journal = {2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2022},
pages = {22669-22679},
url = {https://api.semanticscholar.org/CorpusID:253581703}
}
```
```bibtex
@misc{Rubin2024,
author = {Ohad Rubin},
url = {https://medium.com/@ohadrubin/exploring-weight-decay-in-layer-normalization-challenges-and-a-reparameterization-solution-ad4d12c24950}
}
```
*I visualise a time when we will be to robots what dogs are to humans, and Im rooting for the machines.* — Claude Shannon

View File

@@ -16,7 +16,7 @@
"\n",
"* Dogs vs. Cats Redux: Kernels Edition - https://www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition\n",
"* Base Code - https://www.kaggle.com/reukki/pytorch-cnn-tutorial-with-cats-and-dogs/\n",
"* Effecient Attention Implementation - https://github.com/lucidrains/vit-pytorch#efficient-attention"
"* Efficient Attention Implementation - https://github.com/lucidrains/vit-pytorch#efficient-attention"
]
},
{
@@ -342,7 +342,7 @@
"id": "ZhYDJXk2SRDu"
},
"source": [
"## Image Augumentation"
"## Image Augmentation"
]
},
{
@@ -497,7 +497,7 @@
"id": "TF9yMaRrSvmv"
},
"source": [
"## Effecient Attention"
"## Efficient Attention"
]
},
{
@@ -1307,7 +1307,7 @@
"celltoolbar": "Edit Metadata",
"colab": {
"collapsed_sections": [],
"name": "Effecient Attention | Cats & Dogs",
"name": "Efficient Attention | Cats & Dogs",
"provenance": [],
"toc_visible": true
},

BIN
images/mp3.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 518 KiB

BIN
images/navit.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 133 KiB

BIN
images/vivit.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 104 KiB

BIN
images/xcit.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 814 KiB

View File

@@ -1,11 +1,16 @@
from setuptools import setup, find_packages
with open('README.md') as f:
long_description = f.read()
setup(
name = 'vit-pytorch',
packages = find_packages(exclude=['examples']),
version = '0.34.1',
version = '1.7.8',
license='MIT',
description = 'Vision Transformer (ViT) - Pytorch',
long_description=long_description,
long_description_content_type = 'text/markdown',
author = 'Phil Wang',
author_email = 'lucidrains@gmail.com',
url = 'https://github.com/lucidrains/vit-pytorch',
@@ -15,7 +20,7 @@ setup(
'image recognition'
],
install_requires=[
'einops>=0.4.1',
'einops>=0.7.0',
'torch>=1.10',
'torchvision'
],
@@ -23,7 +28,9 @@ setup(
'pytest-runner',
],
tests_require=[
'pytest'
'pytest',
'torch==2.4.0',
'torchvision==0.19.0'
],
classifiers=[
'Development Status :: 4 - Beta',

View File

@@ -1,3 +1,5 @@
from vit_pytorch.vit import ViT
from vit_pytorch.simple_vit import SimpleViT
from vit_pytorch.mae import MAE
from vit_pytorch.dino import Dino

View File

@@ -110,18 +110,11 @@ class AdaptiveTokenSampling(nn.Module):
# classes
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
@@ -138,6 +131,7 @@ class Attention(nn.Module):
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
@@ -154,6 +148,7 @@ class Attention(nn.Module):
def forward(self, x, *, mask):
num_tokens = x.shape[1]
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
@@ -189,8 +184,8 @@ class Transformer(nn.Module):
self.layers = nn.ModuleList([])
for _, output_num_tokens in zip(range(depth), max_tokens_per_depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, Attention(dim, output_num_tokens = output_num_tokens, heads = heads, dim_head = dim_head, dropout = dropout)),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
Attention(dim, output_num_tokens = output_num_tokens, heads = heads, dim_head = dim_head, dropout = dropout),
FeedForward(dim, mlp_dim, dropout = dropout)
]))
def forward(self, x):
@@ -230,7 +225,9 @@ class ViT(nn.Module):
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim)
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))

View File

@@ -44,18 +44,11 @@ class LayerScale(nn.Module):
def forward(self, x, **kwargs):
return self.fn(x, **kwargs) * self.scale
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
@@ -72,6 +65,7 @@ class Attention(nn.Module):
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias = False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
@@ -89,6 +83,7 @@ class Attention(nn.Module):
def forward(self, x, context = None):
b, n, _, h = *x.shape, self.heads
x = self.norm(x)
context = x if not exists(context) else torch.cat((x, context), dim = 1)
qkv = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1))
@@ -115,8 +110,8 @@ class Transformer(nn.Module):
for ind in range(depth):
self.layers.append(nn.ModuleList([
LayerScale(dim, PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)), depth = ind + 1),
LayerScale(dim, PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)), depth = ind + 1)
LayerScale(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout), depth = ind + 1),
LayerScale(dim, FeedForward(dim, mlp_dim, dropout = dropout), depth = ind + 1)
]))
def forward(self, x, context = None):
layers = dropout_layers(self.layers, dropout = self.layer_dropout)
@@ -150,7 +145,9 @@ class CaiT(nn.Module):
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim)
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches, dim))

View File

@@ -1,9 +1,17 @@
import torch
import torch.nn as nn
from torch import nn, einsum
import torch.nn.functional as F
from einops import rearrange, repeat
# helpers
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def pair(t):
return t if isinstance(t, tuple) else (t, t)
@@ -50,8 +58,9 @@ def cct_16(*args, **kwargs):
def _cct(num_layers, num_heads, mlp_ratio, embedding_dim,
kernel_size=3, stride=None, padding=None,
*args, **kwargs):
stride = stride if stride is not None else max(1, (kernel_size // 2) - 1)
padding = padding if padding is not None else max(1, (kernel_size // 2))
stride = default(stride, max(1, (kernel_size // 2) - 1))
padding = default(padding, max(1, (kernel_size // 2)))
return CCT(num_layers=num_layers,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
@@ -61,13 +70,22 @@ def _cct(num_layers, num_heads, mlp_ratio, embedding_dim,
padding=padding,
*args, **kwargs)
# positional
def sinusoidal_embedding(n_channels, dim):
pe = torch.FloatTensor([[p / (10000 ** (2 * (i // 2) / dim)) for i in range(dim)]
for p in range(n_channels)])
pe[:, 0::2] = torch.sin(pe[:, 0::2])
pe[:, 1::2] = torch.cos(pe[:, 1::2])
return rearrange(pe, '... -> 1 ...')
# modules
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, attention_dropout=0.1, projection_dropout=0.1):
super().__init__()
self.num_heads = num_heads
head_dim = dim // self.num_heads
self.heads = num_heads
head_dim = dim // self.heads
self.scale = head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=False)
@@ -77,17 +95,20 @@ class Attention(nn.Module):
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
attn = (q @ k.transpose(-2, -1)) * self.scale
qkv = self.qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
q = q * self.scale
attn = einsum('b h i d, b h j d -> b h i j', q, k)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
x = einsum('b h i j, b h j d -> b h i d', attn, v)
x = rearrange(x, 'b h n d -> b n (h d)')
return self.proj_drop(self.proj(x))
class TransformerEncoderLayer(nn.Module):
@@ -97,7 +118,8 @@ class TransformerEncoderLayer(nn.Module):
"""
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
attention_dropout=0.1, drop_path_rate=0.1):
super(TransformerEncoderLayer, self).__init__()
super().__init__()
self.pre_norm = nn.LayerNorm(d_model)
self.self_attn = Attention(dim=d_model, num_heads=nhead,
attention_dropout=attention_dropout, projection_dropout=dropout)
@@ -108,50 +130,34 @@ class TransformerEncoderLayer(nn.Module):
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.dropout2 = nn.Dropout(dropout)
self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0 else nn.Identity()
self.drop_path = DropPath(drop_path_rate)
self.activation = F.gelu
def forward(self, src: torch.Tensor, *args, **kwargs) -> torch.Tensor:
def forward(self, src, *args, **kwargs):
src = src + self.drop_path(self.self_attn(self.pre_norm(src)))
src = self.norm1(src)
src2 = self.linear2(self.dropout1(self.activation(self.linear1(src))))
src = src + self.drop_path(self.dropout2(src2))
return src
def drop_path(x, drop_prob: float = 0., training: bool = False):
"""
Obtained from: github.com:rwightman/pytorch-image-models
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""
Obtained from: github.com:rwightman/pytorch-image-models
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
super().__init__()
self.drop_prob = float(drop_prob)
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
batch, drop_prob, device, dtype = x.shape[0], self.drop_prob, x.device, x.dtype
if drop_prob <= 0. or not self.training:
return x
keep_prob = 1 - self.drop_prob
shape = (batch, *((1,) * (x.ndim - 1)))
keep_mask = torch.zeros(shape, device = device).float().uniform_(0, 1) < keep_prob
output = x.div(keep_prob) * keep_mask.float()
return output
class Tokenizer(nn.Module):
def __init__(self,
@@ -164,34 +170,35 @@ class Tokenizer(nn.Module):
activation=None,
max_pool=True,
conv_bias=False):
super(Tokenizer, self).__init__()
super().__init__()
n_filter_list = [n_input_channels] + \
[in_planes for _ in range(n_conv_layers - 1)] + \
[n_output_channels]
n_filter_list_pairs = zip(n_filter_list[:-1], n_filter_list[1:])
self.conv_layers = nn.Sequential(
*[nn.Sequential(
nn.Conv2d(n_filter_list[i], n_filter_list[i + 1],
nn.Conv2d(chan_in, chan_out,
kernel_size=(kernel_size, kernel_size),
stride=(stride, stride),
padding=(padding, padding), bias=conv_bias),
nn.Identity() if activation is None else activation(),
nn.Identity() if not exists(activation) else activation(),
nn.MaxPool2d(kernel_size=pooling_kernel_size,
stride=pooling_stride,
padding=pooling_padding) if max_pool else nn.Identity()
)
for i in range(n_conv_layers)
for chan_in, chan_out in n_filter_list_pairs
])
self.flattener = nn.Flatten(2, 3)
self.apply(self.init_weight)
def sequence_length(self, n_channels=3, height=224, width=224):
return self.forward(torch.zeros((1, n_channels, height, width))).shape[1]
def forward(self, x):
return self.flattener(self.conv_layers(x)).transpose(-2, -1)
return rearrange(self.conv_layers(x), 'b c h w -> b (h w) c')
@staticmethod
def init_weight(m):
@@ -214,106 +221,104 @@ class TransformerClassifier(nn.Module):
sequence_length=None,
*args, **kwargs):
super().__init__()
positional_embedding = positional_embedding if \
positional_embedding in ['sine', 'learnable', 'none'] else 'sine'
assert positional_embedding in {'sine', 'learnable', 'none'}
dim_feedforward = int(embedding_dim * mlp_ratio)
self.embedding_dim = embedding_dim
self.sequence_length = sequence_length
self.seq_pool = seq_pool
assert sequence_length is not None or positional_embedding == 'none', \
assert exists(sequence_length) or positional_embedding == 'none', \
f"Positional embedding is set to {positional_embedding} and" \
f" the sequence length was not specified."
if not seq_pool:
sequence_length += 1
self.class_emb = nn.Parameter(torch.zeros(1, 1, self.embedding_dim),
requires_grad=True)
self.class_emb = nn.Parameter(torch.zeros(1, 1, self.embedding_dim), requires_grad=True)
else:
self.attention_pool = nn.Linear(self.embedding_dim, 1)
if positional_embedding != 'none':
if positional_embedding == 'learnable':
self.positional_emb = nn.Parameter(torch.zeros(1, sequence_length, embedding_dim),
requires_grad=True)
nn.init.trunc_normal_(self.positional_emb, std=0.2)
else:
self.positional_emb = nn.Parameter(self.sinusoidal_embedding(sequence_length, embedding_dim),
requires_grad=False)
else:
if positional_embedding == 'none':
self.positional_emb = None
elif positional_embedding == 'learnable':
self.positional_emb = nn.Parameter(torch.zeros(1, sequence_length, embedding_dim),
requires_grad=True)
nn.init.trunc_normal_(self.positional_emb, std=0.2)
else:
self.positional_emb = nn.Parameter(sinusoidal_embedding(sequence_length, embedding_dim),
requires_grad=False)
self.dropout = nn.Dropout(p=dropout_rate)
dpr = [x.item() for x in torch.linspace(0, stochastic_depth_rate, num_layers)]
self.blocks = nn.ModuleList([
TransformerEncoderLayer(d_model=embedding_dim, nhead=num_heads,
dim_feedforward=dim_feedforward, dropout=dropout_rate,
attention_dropout=attention_dropout, drop_path_rate=dpr[i])
for i in range(num_layers)])
attention_dropout=attention_dropout, drop_path_rate=layer_dpr)
for layer_dpr in dpr])
self.norm = nn.LayerNorm(embedding_dim)
self.fc = nn.Linear(embedding_dim, num_classes)
self.apply(self.init_weight)
def forward(self, x):
if self.positional_emb is None and x.size(1) < self.sequence_length:
b = x.shape[0]
if not exists(self.positional_emb) and x.size(1) < self.sequence_length:
x = F.pad(x, (0, 0, 0, self.n_channels - x.size(1)), mode='constant', value=0)
if not self.seq_pool:
cls_token = self.class_emb.expand(x.shape[0], -1, -1)
cls_token = repeat(self.class_emb, '1 1 d -> b 1 d', b = b)
x = torch.cat((cls_token, x), dim=1)
if self.positional_emb is not None:
if exists(self.positional_emb):
x += self.positional_emb
x = self.dropout(x)
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
if self.seq_pool:
x = torch.matmul(F.softmax(self.attention_pool(x), dim=1).transpose(-1, -2), x).squeeze(-2)
attn_weights = rearrange(self.attention_pool(x), 'b n 1 -> b n')
x = einsum('b n, b n d -> b d', attn_weights.softmax(dim = 1), x)
else:
x = x[:, 0]
x = self.fc(x)
return x
return self.fc(x)
@staticmethod
def init_weight(m):
if isinstance(m, nn.Linear):
nn.init.trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
if isinstance(m, nn.Linear) and exists(m.bias):
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@staticmethod
def sinusoidal_embedding(n_channels, dim):
pe = torch.FloatTensor([[p / (10000 ** (2 * (i // 2) / dim)) for i in range(dim)]
for p in range(n_channels)])
pe[:, 0::2] = torch.sin(pe[:, 0::2])
pe[:, 1::2] = torch.cos(pe[:, 1::2])
return pe.unsqueeze(0)
# CCT Main model
class CCT(nn.Module):
def __init__(self,
img_size=224,
embedding_dim=768,
n_input_channels=3,
n_conv_layers=1,
kernel_size=7,
stride=2,
padding=3,
pooling_kernel_size=3,
pooling_stride=2,
pooling_padding=1,
*args, **kwargs):
super(CCT, self).__init__()
def __init__(
self,
img_size=224,
embedding_dim=768,
n_input_channels=3,
n_conv_layers=1,
kernel_size=7,
stride=2,
padding=3,
pooling_kernel_size=3,
pooling_stride=2,
pooling_padding=1,
*args, **kwargs
):
super().__init__()
img_height, img_width = pair(img_size)
self.tokenizer = Tokenizer(n_input_channels=n_input_channels,

376
vit_pytorch/cct_3d.py Normal file
View File

@@ -0,0 +1,376 @@
import torch
from torch import nn, einsum
import torch.nn.functional as F
from einops import rearrange, repeat
# helpers
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def pair(t):
return t if isinstance(t, tuple) else (t, t)
# CCT Models
__all__ = ['cct_2', 'cct_4', 'cct_6', 'cct_7', 'cct_8', 'cct_14', 'cct_16']
def cct_2(*args, **kwargs):
return _cct(num_layers=2, num_heads=2, mlp_ratio=1, embedding_dim=128,
*args, **kwargs)
def cct_4(*args, **kwargs):
return _cct(num_layers=4, num_heads=2, mlp_ratio=1, embedding_dim=128,
*args, **kwargs)
def cct_6(*args, **kwargs):
return _cct(num_layers=6, num_heads=4, mlp_ratio=2, embedding_dim=256,
*args, **kwargs)
def cct_7(*args, **kwargs):
return _cct(num_layers=7, num_heads=4, mlp_ratio=2, embedding_dim=256,
*args, **kwargs)
def cct_8(*args, **kwargs):
return _cct(num_layers=8, num_heads=4, mlp_ratio=2, embedding_dim=256,
*args, **kwargs)
def cct_14(*args, **kwargs):
return _cct(num_layers=14, num_heads=6, mlp_ratio=3, embedding_dim=384,
*args, **kwargs)
def cct_16(*args, **kwargs):
return _cct(num_layers=16, num_heads=6, mlp_ratio=3, embedding_dim=384,
*args, **kwargs)
def _cct(num_layers, num_heads, mlp_ratio, embedding_dim,
kernel_size=3, stride=None, padding=None,
*args, **kwargs):
stride = default(stride, max(1, (kernel_size // 2) - 1))
padding = default(padding, max(1, (kernel_size // 2)))
return CCT(num_layers=num_layers,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
embedding_dim=embedding_dim,
kernel_size=kernel_size,
stride=stride,
padding=padding,
*args, **kwargs)
# positional
def sinusoidal_embedding(n_channels, dim):
pe = torch.FloatTensor([[p / (10000 ** (2 * (i // 2) / dim)) for i in range(dim)]
for p in range(n_channels)])
pe[:, 0::2] = torch.sin(pe[:, 0::2])
pe[:, 1::2] = torch.cos(pe[:, 1::2])
return rearrange(pe, '... -> 1 ...')
# modules
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, attention_dropout=0.1, projection_dropout=0.1):
super().__init__()
self.heads = num_heads
head_dim = dim // self.heads
self.scale = head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=False)
self.attn_drop = nn.Dropout(attention_dropout)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(projection_dropout)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
q = q * self.scale
attn = einsum('b h i d, b h j d -> b h i j', q, k)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = einsum('b h i j, b h j d -> b h i d', attn, v)
x = rearrange(x, 'b h n d -> b n (h d)')
return self.proj_drop(self.proj(x))
class TransformerEncoderLayer(nn.Module):
"""
Inspired by torch.nn.TransformerEncoderLayer and
rwightman's timm package.
"""
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
attention_dropout=0.1, drop_path_rate=0.1):
super().__init__()
self.pre_norm = nn.LayerNorm(d_model)
self.self_attn = Attention(dim=d_model, num_heads=nhead,
attention_dropout=attention_dropout, projection_dropout=dropout)
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout1 = nn.Dropout(dropout)
self.norm1 = nn.LayerNorm(d_model)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.dropout2 = nn.Dropout(dropout)
self.drop_path = DropPath(drop_path_rate)
self.activation = F.gelu
def forward(self, src, *args, **kwargs):
src = src + self.drop_path(self.self_attn(self.pre_norm(src)))
src = self.norm1(src)
src2 = self.linear2(self.dropout1(self.activation(self.linear1(src))))
src = src + self.drop_path(self.dropout2(src2))
return src
class DropPath(nn.Module):
def __init__(self, drop_prob=None):
super().__init__()
self.drop_prob = float(drop_prob)
def forward(self, x):
batch, drop_prob, device, dtype = x.shape[0], self.drop_prob, x.device, x.dtype
if drop_prob <= 0. or not self.training:
return x
keep_prob = 1 - self.drop_prob
shape = (batch, *((1,) * (x.ndim - 1)))
keep_mask = torch.zeros(shape, device = device).float().uniform_(0, 1) < keep_prob
output = x.div(keep_prob) * keep_mask.float()
return output
class Tokenizer(nn.Module):
def __init__(
self,
frame_kernel_size,
kernel_size,
stride,
padding,
frame_stride=1,
frame_pooling_stride=1,
frame_pooling_kernel_size=1,
pooling_kernel_size=3,
pooling_stride=2,
pooling_padding=1,
n_conv_layers=1,
n_input_channels=3,
n_output_channels=64,
in_planes=64,
activation=None,
max_pool=True,
conv_bias=False
):
super().__init__()
n_filter_list = [n_input_channels] + \
[in_planes for _ in range(n_conv_layers - 1)] + \
[n_output_channels]
n_filter_list_pairs = zip(n_filter_list[:-1], n_filter_list[1:])
self.conv_layers = nn.Sequential(
*[nn.Sequential(
nn.Conv3d(chan_in, chan_out,
kernel_size=(frame_kernel_size, kernel_size, kernel_size),
stride=(frame_stride, stride, stride),
padding=(frame_kernel_size // 2, padding, padding), bias=conv_bias),
nn.Identity() if not exists(activation) else activation(),
nn.MaxPool3d(kernel_size=(frame_pooling_kernel_size, pooling_kernel_size, pooling_kernel_size),
stride=(frame_pooling_stride, pooling_stride, pooling_stride),
padding=(frame_pooling_kernel_size // 2, pooling_padding, pooling_padding)) if max_pool else nn.Identity()
)
for chan_in, chan_out in n_filter_list_pairs
])
self.apply(self.init_weight)
def sequence_length(self, n_channels=3, frames=8, height=224, width=224):
return self.forward(torch.zeros((1, n_channels, frames, height, width))).shape[1]
def forward(self, x):
x = self.conv_layers(x)
return rearrange(x, 'b c f h w -> b (f h w) c')
@staticmethod
def init_weight(m):
if isinstance(m, nn.Conv3d):
nn.init.kaiming_normal_(m.weight)
class TransformerClassifier(nn.Module):
def __init__(
self,
seq_pool=True,
embedding_dim=768,
num_layers=12,
num_heads=12,
mlp_ratio=4.0,
num_classes=1000,
dropout_rate=0.1,
attention_dropout=0.1,
stochastic_depth_rate=0.1,
positional_embedding='sine',
sequence_length=None,
*args, **kwargs
):
super().__init__()
assert positional_embedding in {'sine', 'learnable', 'none'}
dim_feedforward = int(embedding_dim * mlp_ratio)
self.embedding_dim = embedding_dim
self.sequence_length = sequence_length
self.seq_pool = seq_pool
assert exists(sequence_length) or positional_embedding == 'none', \
f"Positional embedding is set to {positional_embedding} and" \
f" the sequence length was not specified."
if not seq_pool:
sequence_length += 1
self.class_emb = nn.Parameter(torch.zeros(1, 1, self.embedding_dim))
else:
self.attention_pool = nn.Linear(self.embedding_dim, 1)
if positional_embedding == 'none':
self.positional_emb = None
elif positional_embedding == 'learnable':
self.positional_emb = nn.Parameter(torch.zeros(1, sequence_length, embedding_dim))
nn.init.trunc_normal_(self.positional_emb, std = 0.2)
else:
self.register_buffer('positional_emb', sinusoidal_embedding(sequence_length, embedding_dim))
self.dropout = nn.Dropout(p=dropout_rate)
dpr = [x.item() for x in torch.linspace(0, stochastic_depth_rate, num_layers)]
self.blocks = nn.ModuleList([
TransformerEncoderLayer(d_model=embedding_dim, nhead=num_heads,
dim_feedforward=dim_feedforward, dropout=dropout_rate,
attention_dropout=attention_dropout, drop_path_rate=layer_dpr)
for layer_dpr in dpr])
self.norm = nn.LayerNorm(embedding_dim)
self.fc = nn.Linear(embedding_dim, num_classes)
self.apply(self.init_weight)
@staticmethod
def init_weight(m):
if isinstance(m, nn.Linear):
nn.init.trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and exists(m.bias):
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward(self, x):
b = x.shape[0]
if not exists(self.positional_emb) and x.size(1) < self.sequence_length:
x = F.pad(x, (0, 0, 0, self.n_channels - x.size(1)), mode='constant', value=0)
if not self.seq_pool:
cls_token = repeat(self.class_emb, '1 1 d -> b 1 d', b = b)
x = torch.cat((cls_token, x), dim=1)
if exists(self.positional_emb):
x += self.positional_emb
x = self.dropout(x)
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
if self.seq_pool:
attn_weights = rearrange(self.attention_pool(x), 'b n 1 -> b n')
x = einsum('b n, b n d -> b d', attn_weights.softmax(dim = 1), x)
else:
x = x[:, 0]
return self.fc(x)
# CCT Main model
class CCT(nn.Module):
def __init__(
self,
img_size=224,
num_frames=8,
embedding_dim=768,
n_input_channels=3,
n_conv_layers=1,
frame_stride=1,
frame_kernel_size=3,
frame_pooling_kernel_size=1,
frame_pooling_stride=1,
kernel_size=7,
stride=2,
padding=3,
pooling_kernel_size=3,
pooling_stride=2,
pooling_padding=1,
*args, **kwargs
):
super().__init__()
img_height, img_width = pair(img_size)
self.tokenizer = Tokenizer(
n_input_channels=n_input_channels,
n_output_channels=embedding_dim,
frame_stride=frame_stride,
frame_kernel_size=frame_kernel_size,
frame_pooling_stride=frame_pooling_stride,
frame_pooling_kernel_size=frame_pooling_kernel_size,
kernel_size=kernel_size,
stride=stride,
padding=padding,
pooling_kernel_size=pooling_kernel_size,
pooling_stride=pooling_stride,
pooling_padding=pooling_padding,
max_pool=True,
activation=nn.ReLU,
n_conv_layers=n_conv_layers,
conv_bias=False
)
self.classifier = TransformerClassifier(
sequence_length=self.tokenizer.sequence_length(
n_channels=n_input_channels,
frames=num_frames,
height=img_height,
width=img_width
),
embedding_dim=embedding_dim,
seq_pool=True,
dropout_rate=0.,
attention_dropout=0.1,
stochastic_depth=0.1,
*args, **kwargs
)
def forward(self, x):
x = self.tokenizer(x)
return self.classifier(x)

View File

@@ -13,22 +13,13 @@ def exists(val):
def default(val, d):
return val if exists(val) else d
# pre-layernorm
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
# feedforward
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
@@ -47,6 +38,7 @@ class Attention(nn.Module):
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
@@ -60,6 +52,7 @@ class Attention(nn.Module):
def forward(self, x, context = None, kv_include_self = False):
b, n, _, h = *x.shape, self.heads
x = self.norm(x)
context = default(context, x)
if kv_include_self:
@@ -86,8 +79,8 @@ class Transformer(nn.Module):
self.norm = nn.LayerNorm(dim)
for _ in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout),
FeedForward(dim, mlp_dim, dropout = dropout)
]))
def forward(self, x):
@@ -121,8 +114,8 @@ class CrossTransformer(nn.Module):
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
ProjectInOut(sm_dim, lg_dim, PreNorm(lg_dim, Attention(lg_dim, heads = heads, dim_head = dim_head, dropout = dropout))),
ProjectInOut(lg_dim, sm_dim, PreNorm(sm_dim, Attention(sm_dim, heads = heads, dim_head = dim_head, dropout = dropout)))
ProjectInOut(sm_dim, lg_dim, Attention(lg_dim, heads = heads, dim_head = dim_head, dropout = dropout)),
ProjectInOut(lg_dim, sm_dim, Attention(sm_dim, heads = heads, dim_head = dim_head, dropout = dropout))
]))
def forward(self, sm_tokens, lg_tokens):
@@ -177,16 +170,19 @@ class ImageEmbedder(nn.Module):
dim,
image_size,
patch_size,
dropout = 0.
dropout = 0.,
channels = 3
):
super().__init__()
assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_size // patch_size) ** 2
patch_dim = 3 * patch_size ** 2
patch_dim = channels * patch_size ** 2
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim)
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
@@ -228,11 +224,12 @@ class CrossViT(nn.Module):
cross_attn_dim_head = 64,
depth = 3,
dropout = 0.1,
emb_dropout = 0.1
emb_dropout = 0.1,
channels = 3
):
super().__init__()
self.sm_image_embedder = ImageEmbedder(dim = sm_dim, image_size = image_size, patch_size = sm_patch_size, dropout = emb_dropout)
self.lg_image_embedder = ImageEmbedder(dim = lg_dim, image_size = image_size, patch_size = lg_patch_size, dropout = emb_dropout)
self.sm_image_embedder = ImageEmbedder(dim = sm_dim, channels= channels, image_size = image_size, patch_size = sm_patch_size, dropout = emb_dropout)
self.lg_image_embedder = ImageEmbedder(dim = lg_dim, channels = channels, image_size = image_size, patch_size = lg_patch_size, dropout = emb_dropout)
self.multi_scale_encoder = MultiScaleEncoder(
depth = depth,

View File

@@ -34,19 +34,11 @@ class LayerNorm(nn.Module): # layernorm, but done in the channel dimension #1
mean = torch.mean(x, dim = 1, keepdim = True)
return (x - mean) / (var + self.eps).sqrt() * self.g + self.b
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
x = self.norm(x)
return self.fn(x, **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, mult = 4, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
LayerNorm(dim),
nn.Conv2d(dim, dim * mult, 1),
nn.GELU(),
nn.Dropout(dropout),
@@ -75,6 +67,7 @@ class Attention(nn.Module):
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
@@ -89,6 +82,8 @@ class Attention(nn.Module):
def forward(self, x):
shape = x.shape
b, n, _, y, h = *shape, self.heads
x = self.norm(x)
q, k, v = (self.to_q(x), *self.to_kv(x).chunk(2, dim = 1))
q, k, v = map(lambda t: rearrange(t, 'b (h d) x y -> (b h) (x y) d', h = h), (q, k, v))
@@ -107,8 +102,8 @@ class Transformer(nn.Module):
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, Attention(dim, proj_kernel = proj_kernel, kv_proj_stride = kv_proj_stride, heads = heads, dim_head = dim_head, dropout = dropout)),
PreNorm(dim, FeedForward(dim, mlp_mult, dropout = dropout))
Attention(dim, proj_kernel = proj_kernel, kv_proj_stride = kv_proj_stride, heads = heads, dim_head = dim_head, dropout = dropout),
FeedForward(dim, mlp_mult, dropout = dropout)
]))
def forward(self, x):
for attn, ff in self.layers:
@@ -145,12 +140,13 @@ class CvT(nn.Module):
s3_heads = 6,
s3_depth = 10,
s3_mlp_mult = 4,
dropout = 0.
dropout = 0.,
channels = 3
):
super().__init__()
kwargs = dict(locals())
dim = 3
dim = channels
layers = []
for prefix in ('s1', 's2', 's3'):

View File

@@ -5,25 +5,11 @@ import torch.nn.functional as F
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
class Residual(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(x, **kwargs) + x
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
@@ -40,6 +26,7 @@ class Attention(nn.Module):
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.dropout = nn.Dropout(dropout)
@@ -59,6 +46,8 @@ class Attention(nn.Module):
def forward(self, x):
b, n, _, h = *x.shape, self.heads
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)
@@ -86,13 +75,13 @@ class Transformer(nn.Module):
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Residual(PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout))),
Residual(PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)))
Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout),
FeedForward(dim, mlp_dim, dropout = dropout)
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x)
x = ff(x)
x = attn(x) + x
x = ff(x) + x
return x
class DeepViT(nn.Module):
@@ -105,7 +94,9 @@ class DeepViT(nn.Module):
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim)
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))

View File

@@ -1,6 +1,8 @@
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn import Module
import torch.nn.functional as F
from vit_pytorch.vit import ViT
from vit_pytorch.t2t import T2TViT
from vit_pytorch.efficient import ViT as EfficientViT
@@ -12,6 +14,9 @@ from einops import rearrange, repeat
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
# classes
class DistillMixin:
@@ -20,12 +25,12 @@ class DistillMixin:
x = self.to_patch_embedding(img)
b, n, _ = x.shape
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
cls_tokens = repeat(self.cls_token, '1 n d -> b n d', b = b)
x = torch.cat((cls_tokens, x), dim = 1)
x += self.pos_embedding[:, :(n + 1)]
if distilling:
distill_tokens = repeat(distill_token, '() n d -> b n d', b = b)
distill_tokens = repeat(distill_token, '1 n d -> b n d', b = b)
x = torch.cat((x, distill_tokens), dim = 1)
x = self._attend(x)
@@ -97,7 +102,7 @@ class DistillableEfficientViT(DistillMixin, EfficientViT):
# knowledge distillation wrapper
class DistillWrapper(nn.Module):
class DistillWrapper(Module):
def __init__(
self,
*,
@@ -105,7 +110,8 @@ class DistillWrapper(nn.Module):
student,
temperature = 1.,
alpha = 0.5,
hard = False
hard = False,
mlp_layernorm = False
):
super().__init__()
assert (isinstance(student, (DistillableViT, DistillableT2TViT, DistillableEfficientViT))) , 'student must be a vision transformer'
@@ -122,14 +128,14 @@ class DistillWrapper(nn.Module):
self.distillation_token = nn.Parameter(torch.randn(1, 1, dim))
self.distill_mlp = nn.Sequential(
nn.LayerNorm(dim),
nn.LayerNorm(dim) if mlp_layernorm else nn.Identity(),
nn.Linear(dim, num_classes)
)
def forward(self, img, labels, temperature = None, alpha = None, **kwargs):
b, *_ = img.shape
alpha = alpha if exists(alpha) else self.alpha
T = temperature if exists(temperature) else self.temperature
alpha = default(alpha, self.alpha)
T = default(temperature, self.temperature)
with torch.no_grad():
teacher_logits = self.teacher(img)

View File

@@ -17,7 +17,9 @@ class ViT(nn.Module):
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim)
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))

View File

@@ -4,14 +4,27 @@ from torch import nn
def exists(val):
return val is not None
def identity(t):
return t
def clone_and_detach(t):
return t.clone().detach()
def apply_tuple_or_single(fn, val):
if isinstance(val, tuple):
return tuple(map(fn, val))
return fn(val)
class Extractor(nn.Module):
def __init__(
self,
vit,
device = None,
layer = None,
layer_name = 'transformer',
layer_save_input = False,
return_embeddings_only = False
return_embeddings_only = False,
detach = True
):
super().__init__()
self.vit = vit
@@ -23,17 +36,24 @@ class Extractor(nn.Module):
self.ejected = False
self.device = device
self.layer = layer
self.layer_name = layer_name
self.layer_save_input = layer_save_input # whether to save input or output of layer
self.return_embeddings_only = return_embeddings_only
self.detach_fn = clone_and_detach if detach else identity
def _hook(self, _, inputs, output):
tensor_to_save = inputs if self.layer_save_input else output
self.latents = tensor_to_save.clone().detach()
layer_output = inputs if self.layer_save_input else output
self.latents = apply_tuple_or_single(self.detach_fn, layer_output)
def _register_hook(self):
assert hasattr(self.vit, self.layer_name), 'layer whose output to take as embedding not found in vision transformer'
layer = getattr(self.vit, self.layer_name)
if not exists(self.layer):
assert hasattr(self.vit, self.layer_name), 'layer whose output to take as embedding not found in vision transformer'
layer = getattr(self.vit, self.layer_name)
else:
layer = self.layer
handle = layer.register_forward_hook(self._hook)
self.hooks.append(handle)
self.hook_registered = True
@@ -62,7 +82,7 @@ class Extractor(nn.Module):
pred = self.vit(img)
target_device = self.device if exists(self.device) else img.device
latents = self.latents.to(target_device)
latents = apply_tuple_or_single(lambda t: t.to(target_device), self.latents)
if return_embeddings_only or self.return_embeddings_only:
return latents

View File

@@ -118,7 +118,9 @@ class ViT(nn.Module):
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim)
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))

View File

@@ -26,16 +26,6 @@ class ExcludeCLS(nn.Module):
x = self.fn(x, **kwargs)
return torch.cat((cls_token, x), dim = 1)
# prenorm
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
# feed forward related classes
class DepthWiseConv2d(nn.Module):
@@ -52,6 +42,7 @@ class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Conv2d(dim, hidden_dim, 1),
nn.Hardswish(),
DepthWiseConv2d(hidden_dim, hidden_dim, 3, padding = 1),
@@ -77,6 +68,7 @@ class Attention(nn.Module):
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
@@ -88,6 +80,8 @@ class Attention(nn.Module):
def forward(self, x):
b, n, _, h = *x.shape, self.heads
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)
@@ -106,8 +100,8 @@ class Transformer(nn.Module):
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Residual(PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout))),
ExcludeCLS(Residual(PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))))
Residual(Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
ExcludeCLS(Residual(FeedForward(dim, mlp_dim, dropout = dropout)))
]))
def forward(self, x):
for attn, ff in self.layers:
@@ -126,7 +120,9 @@ class LocalViT(nn.Module):
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim),
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))

278
vit_pytorch/look_vit.py Normal file
View File

@@ -0,0 +1,278 @@
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn import Module, ModuleList
from einops import einsum, rearrange, repeat, reduce
from einops.layers.torch import Rearrange
# helpers
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def divisible_by(num, den):
return (num % den) == 0
# simple vit sinusoidal pos emb
def posemb_sincos_2d(t, temperature = 10000):
h, w, d, device = *t.shape[1:], t.device
y, x = torch.meshgrid(torch.arange(h, device = device), torch.arange(w, device = device), indexing = 'ij')
assert (d % 4) == 0, "feature dimension must be multiple of 4 for sincos emb"
omega = torch.arange(d // 4, device = device) / (d // 4 - 1)
omega = temperature ** -omega
y = y.flatten()[:, None] * omega[None, :]
x = x.flatten()[:, None] * omega[None, :]
pos = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim = 1)
return pos.float()
# bias-less layernorm with unit offset trick (discovered by Ohad Rubin)
class LayerNorm(Module):
def __init__(self, dim):
super().__init__()
self.ln = nn.LayerNorm(dim, elementwise_affine = False)
self.gamma = nn.Parameter(torch.zeros(dim))
def forward(self, x):
normed = self.ln(x)
return normed * (self.gamma + 1)
# mlp
def MLP(dim, factor = 4, dropout = 0.):
hidden_dim = int(dim * factor)
return nn.Sequential(
LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
# attention
class Attention(Module):
def __init__(
self,
dim,
heads = 8,
dim_head = 64,
dropout = 0.,
cross_attend = False,
reuse_attention = False
):
super().__init__()
inner_dim = dim_head * heads
self.scale = dim_head ** -0.5
self.heads = heads
self.reuse_attention = reuse_attention
self.cross_attend = cross_attend
self.split_heads = Rearrange('b n (h d) -> b h n d', h = heads)
self.norm = LayerNorm(dim) if not reuse_attention else nn.Identity()
self.norm_context = LayerNorm(dim) if cross_attend else nn.Identity()
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_q = nn.Linear(dim, inner_dim, bias = False) if not reuse_attention else None
self.to_k = nn.Linear(dim, inner_dim, bias = False) if not reuse_attention else None
self.to_v = nn.Linear(dim, inner_dim, bias = False)
self.to_out = nn.Sequential(
Rearrange('b h n d -> b n (h d)'),
nn.Linear(inner_dim, dim, bias = False),
nn.Dropout(dropout)
)
def forward(
self,
x,
context = None,
return_qk_sim = False,
qk_sim = None
):
x = self.norm(x)
assert not (exists(context) ^ self.cross_attend)
if self.cross_attend:
context = self.norm_context(context)
else:
context = x
v = self.to_v(context)
v = self.split_heads(v)
if not self.reuse_attention:
qk = (self.to_q(x), self.to_k(context))
q, k = tuple(self.split_heads(t) for t in qk)
q = q * self.scale
qk_sim = einsum(q, k, 'b h i d, b h j d -> b h i j')
else:
assert exists(qk_sim), 'qk sim matrix must be passed in for reusing previous attention'
attn = self.attend(qk_sim)
attn = self.dropout(attn)
out = einsum(attn, v, 'b h i j, b h j d -> b h i d')
out = self.to_out(out)
if not return_qk_sim:
return out
return out, qk_sim
# LookViT
class LookViT(Module):
def __init__(
self,
*,
dim,
image_size,
num_classes,
depth = 3,
patch_size = 16,
heads = 8,
mlp_factor = 4,
dim_head = 64,
highres_patch_size = 12,
highres_mlp_factor = 4,
cross_attn_heads = 8,
cross_attn_dim_head = 64,
patch_conv_kernel_size = 7,
dropout = 0.1,
channels = 3
):
super().__init__()
assert divisible_by(image_size, highres_patch_size)
assert divisible_by(image_size, patch_size)
assert patch_size > highres_patch_size, 'patch size of the main vision transformer should be smaller than the highres patch sizes (that does the `lookup`)'
assert not divisible_by(patch_conv_kernel_size, 2)
self.dim = dim
self.image_size = image_size
self.patch_size = patch_size
kernel_size = patch_conv_kernel_size
patch_dim = (highres_patch_size * highres_patch_size) * channels
self.to_patches = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (p1 p2 c) h w', p1 = highres_patch_size, p2 = highres_patch_size),
nn.Conv2d(patch_dim, dim, kernel_size, padding = kernel_size // 2),
Rearrange('b c h w -> b h w c'),
LayerNorm(dim),
)
# absolute positions
num_patches = (image_size // highres_patch_size) ** 2
self.pos_embedding = nn.Parameter(torch.randn(num_patches, dim))
# lookvit blocks
layers = ModuleList([])
for _ in range(depth):
layers.append(ModuleList([
Attention(dim = dim, dim_head = dim_head, heads = heads, dropout = dropout),
MLP(dim = dim, factor = mlp_factor, dropout = dropout),
Attention(dim = dim, dim_head = cross_attn_dim_head, heads = cross_attn_heads, dropout = dropout, cross_attend = True),
Attention(dim = dim, dim_head = cross_attn_dim_head, heads = cross_attn_heads, dropout = dropout, cross_attend = True, reuse_attention = True),
LayerNorm(dim),
MLP(dim = dim, factor = highres_mlp_factor, dropout = dropout)
]))
self.layers = layers
self.norm = LayerNorm(dim)
self.highres_norm = LayerNorm(dim)
self.to_logits = nn.Linear(dim, num_classes, bias = False)
def forward(self, img):
assert img.shape[-2:] == (self.image_size, self.image_size)
# to patch tokens and positions
highres_tokens = self.to_patches(img)
size = highres_tokens.shape[-2]
pos_emb = posemb_sincos_2d(highres_tokens)
highres_tokens = highres_tokens + rearrange(pos_emb, '(h w) d -> h w d', h = size)
tokens = F.interpolate(
rearrange(highres_tokens, 'b h w d -> b d h w'),
img.shape[-1] // self.patch_size,
mode = 'bilinear'
)
tokens = rearrange(tokens, 'b c h w -> b (h w) c')
highres_tokens = rearrange(highres_tokens, 'b h w c -> b (h w) c')
# attention and feedforwards
for attn, mlp, lookup_cross_attn, highres_attn, highres_norm, highres_mlp in self.layers:
# main tokens cross attends (lookup) on the high res tokens
lookup_out, qk_sim = lookup_cross_attn(tokens, highres_tokens, return_qk_sim = True) # return attention as they reuse the attention matrix
tokens = lookup_out + tokens
tokens = attn(tokens) + tokens
tokens = mlp(tokens) + tokens
# attention-reuse
qk_sim = rearrange(qk_sim, 'b h i j -> b h j i') # transpose for reverse cross attention
highres_tokens = highres_attn(highres_tokens, tokens, qk_sim = qk_sim) + highres_tokens
highres_tokens = highres_norm(highres_tokens)
highres_tokens = highres_mlp(highres_tokens) + highres_tokens
# to logits
tokens = self.norm(tokens)
highres_tokens = self.highres_norm(highres_tokens)
tokens = reduce(tokens, 'b n d -> b d', 'mean')
highres_tokens = reduce(highres_tokens, 'b n d -> b d', 'mean')
return self.to_logits(tokens + highres_tokens)
# main
if __name__ == '__main__':
v = LookViT(
image_size = 256,
num_classes = 1000,
dim = 512,
depth = 2,
heads = 8,
dim_head = 64,
patch_size = 32,
highres_patch_size = 8,
highres_mlp_factor = 2,
cross_attn_heads = 8,
cross_attn_dim_head = 64,
dropout = 0.1
).cuda()
img = torch.randn(2, 3, 256, 256).cuda()
pred = v(img)
assert pred.shape == (2, 1000)

View File

@@ -24,11 +24,14 @@ class MAE(nn.Module):
self.encoder = encoder
num_patches, encoder_dim = encoder.pos_embedding.shape[-2:]
self.to_patch, self.patch_to_emb = encoder.to_patch_embedding[:2]
pixel_values_per_patch = self.patch_to_emb.weight.shape[-1]
self.to_patch = encoder.to_patch_embedding[0]
self.patch_to_emb = nn.Sequential(*encoder.to_patch_embedding[1:])
pixel_values_per_patch = encoder.to_patch_embedding[2].weight.shape[-1]
# decoder parameters
self.decoder_dim = decoder_dim
self.enc_to_dec = nn.Linear(encoder_dim, decoder_dim) if encoder_dim != decoder_dim else nn.Identity()
self.mask_token = nn.Parameter(torch.randn(decoder_dim))
self.decoder = Transformer(dim = decoder_dim, depth = decoder_depth, heads = decoder_heads, dim_head = decoder_dim_head, mlp_dim = decoder_dim * 4)
@@ -46,7 +49,10 @@ class MAE(nn.Module):
# patch to encoder tokens and add positions
tokens = self.patch_to_emb(patches)
tokens = tokens + self.encoder.pos_embedding[:, 1:(num_patches + 1)]
if self.encoder.pool == "cls":
tokens += self.encoder.pos_embedding[:, 1:(num_patches + 1)]
elif self.encoder.pool == "mean":
tokens += self.encoder.pos_embedding.to(device, dtype=tokens.dtype)
# calculate of patches needed to be masked, and get random indices, dividing it up for mask vs unmasked
@@ -73,7 +79,7 @@ class MAE(nn.Module):
# reapply decoder position embedding to unmasked tokens
decoder_tokens = decoder_tokens + self.decoder_pos_emb(unmasked_indices)
unmasked_decoder_tokens = decoder_tokens + self.decoder_pos_emb(unmasked_indices)
# repeat mask tokens for number of masked, and add the positions using the masked indices derived above
@@ -81,13 +87,15 @@ class MAE(nn.Module):
mask_tokens = mask_tokens + self.decoder_pos_emb(masked_indices)
# concat the masked tokens to the decoder tokens and attend with decoder
decoder_tokens = torch.cat((mask_tokens, decoder_tokens), dim = 1)
decoder_tokens = torch.zeros(batch, num_patches, self.decoder_dim, device=device)
decoder_tokens[batch_range, unmasked_indices] = unmasked_decoder_tokens
decoder_tokens[batch_range, masked_indices] = mask_tokens
decoded_tokens = self.decoder(decoder_tokens)
# splice out the mask tokens and project to pixel values
mask_tokens = decoded_tokens[:, :num_masked]
mask_tokens = decoded_tokens[batch_range, masked_indices]
pred_pixel_values = self.to_pixels(mask_tokens)
# calculate reconstruction loss

View File

@@ -19,20 +19,20 @@ def cast_tuple(val, length = 1):
# helper classes
class PreNormResidual(nn.Module):
class Residual(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x):
return self.fn(self.norm(x)) + x
return self.fn(x) + x
class FeedForward(nn.Module):
def __init__(self, dim, mult = 4, dropout = 0.):
super().__init__()
inner_dim = int(dim * mult)
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, inner_dim),
nn.GELU(),
nn.Dropout(dropout),
@@ -100,12 +100,14 @@ def MBConv(
stride = 2 if downsample else 1
net = nn.Sequential(
nn.Conv2d(dim_in, dim_out, 1),
nn.BatchNorm2d(dim_out),
nn.SiLU(),
nn.Conv2d(dim_out, dim_out, 3, stride = stride, padding = 1, groups = dim_out),
SqueezeExcitation(dim_out, shrinkage_rate = shrinkage_rate),
nn.Conv2d(dim_out, dim_out, 1),
nn.Conv2d(dim_in, hidden_dim, 1),
nn.BatchNorm2d(hidden_dim),
nn.GELU(),
nn.Conv2d(hidden_dim, hidden_dim, 3, stride = stride, padding = 1, groups = hidden_dim),
nn.BatchNorm2d(hidden_dim),
nn.GELU(),
SqueezeExcitation(hidden_dim, shrinkage_rate = shrinkage_rate),
nn.Conv2d(hidden_dim, dim_out, 1),
nn.BatchNorm2d(dim_out)
)
@@ -130,6 +132,7 @@ class Attention(nn.Module):
self.heads = dim // dim_head
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.to_qkv = nn.Linear(dim, dim * 3, bias = False)
self.attend = nn.Sequential(
@@ -158,6 +161,8 @@ class Attention(nn.Module):
def forward(self, x):
batch, height, width, window_height, window_width, _, device, h = *x.shape, x.device, self.heads
x = self.norm(x)
# flatten
x = rearrange(x, 'b x y w1 w2 d -> (b x y) (w1 w2) d')
@@ -168,7 +173,7 @@ class Attention(nn.Module):
# split heads
q, k, v = map(lambda t: rearrange(t, 'b n (h d ) -> b h n d', h = h), (q, k, v))
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
# scale
@@ -257,13 +262,13 @@ class MaxViT(nn.Module):
shrinkage_rate = mbconv_shrinkage_rate
),
Rearrange('b d (x w1) (y w2) -> b x y w1 w2 d', w1 = w, w2 = w), # block-like attention
PreNormResidual(layer_dim, Attention(dim = layer_dim, dim_head = dim_head, dropout = dropout, window_size = w)),
PreNormResidual(layer_dim, FeedForward(dim = layer_dim, dropout = dropout)),
Residual(layer_dim, Attention(dim = layer_dim, dim_head = dim_head, dropout = dropout, window_size = w)),
Residual(layer_dim, FeedForward(dim = layer_dim, dropout = dropout)),
Rearrange('b x y w1 w2 d -> b d (x w1) (y w2)'),
Rearrange('b d (w1 x) (w2 y) -> b x y w1 w2 d', w1 = w, w2 = w), # grid-like attention
PreNormResidual(layer_dim, Attention(dim = layer_dim, dim_head = dim_head, dropout = dropout, window_size = w)),
PreNormResidual(layer_dim, FeedForward(dim = layer_dim, dropout = dropout)),
Residual(layer_dim, Attention(dim = layer_dim, dim_head = dim_head, dropout = dropout, window_size = w)),
Residual(layer_dim, FeedForward(dim = layer_dim, dropout = dropout)),
Rearrange('b x y w1 w2 d -> b d (w1 x) (w2 y)'),
)

View File

@@ -0,0 +1,340 @@
from functools import partial
import torch
from torch import nn, einsum
import torch.nn.functional as F
from torch.nn import Module, ModuleList, Sequential
from einops import rearrange, repeat, reduce, pack, unpack
from einops.layers.torch import Rearrange, Reduce
# helpers
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def pack_one(x, pattern):
return pack([x], pattern)
def unpack_one(x, ps, pattern):
return unpack(x, ps, pattern)[0]
def cast_tuple(val, length = 1):
return val if isinstance(val, tuple) else ((val,) * length)
# helper classes
def FeedForward(dim, mult = 4, dropout = 0.):
inner_dim = int(dim * mult)
return Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, inner_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
# MBConv
class SqueezeExcitation(Module):
def __init__(self, dim, shrinkage_rate = 0.25):
super().__init__()
hidden_dim = int(dim * shrinkage_rate)
self.gate = Sequential(
Reduce('b c h w -> b c', 'mean'),
nn.Linear(dim, hidden_dim, bias = False),
nn.SiLU(),
nn.Linear(hidden_dim, dim, bias = False),
nn.Sigmoid(),
Rearrange('b c -> b c 1 1')
)
def forward(self, x):
return x * self.gate(x)
class MBConvResidual(Module):
def __init__(self, fn, dropout = 0.):
super().__init__()
self.fn = fn
self.dropsample = Dropsample(dropout)
def forward(self, x):
out = self.fn(x)
out = self.dropsample(out)
return out + x
class Dropsample(Module):
def __init__(self, prob = 0):
super().__init__()
self.prob = prob
def forward(self, x):
device = x.device
if self.prob == 0. or (not self.training):
return x
keep_mask = torch.FloatTensor((x.shape[0], 1, 1, 1), device = device).uniform_() > self.prob
return x * keep_mask / (1 - self.prob)
def MBConv(
dim_in,
dim_out,
*,
downsample,
expansion_rate = 4,
shrinkage_rate = 0.25,
dropout = 0.
):
hidden_dim = int(expansion_rate * dim_out)
stride = 2 if downsample else 1
net = Sequential(
nn.Conv2d(dim_in, hidden_dim, 1),
nn.BatchNorm2d(hidden_dim),
nn.GELU(),
nn.Conv2d(hidden_dim, hidden_dim, 3, stride = stride, padding = 1, groups = hidden_dim),
nn.BatchNorm2d(hidden_dim),
nn.GELU(),
SqueezeExcitation(hidden_dim, shrinkage_rate = shrinkage_rate),
nn.Conv2d(hidden_dim, dim_out, 1),
nn.BatchNorm2d(dim_out)
)
if dim_in == dim_out and not downsample:
net = MBConvResidual(net, dropout = dropout)
return net
# attention related classes
class Attention(Module):
def __init__(
self,
dim,
dim_head = 32,
dropout = 0.,
window_size = 7,
num_registers = 1
):
super().__init__()
assert num_registers > 0
assert (dim % dim_head) == 0, 'dimension should be divisible by dimension per head'
self.heads = dim // dim_head
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.to_qkv = nn.Linear(dim, dim * 3, bias = False)
self.attend = nn.Sequential(
nn.Softmax(dim = -1),
nn.Dropout(dropout)
)
self.to_out = nn.Sequential(
nn.Linear(dim, dim, bias = False),
nn.Dropout(dropout)
)
# relative positional bias
num_rel_pos_bias = (2 * window_size - 1) ** 2
self.rel_pos_bias = nn.Embedding(num_rel_pos_bias + 1, self.heads)
pos = torch.arange(window_size)
grid = torch.stack(torch.meshgrid(pos, pos, indexing = 'ij'))
grid = rearrange(grid, 'c i j -> (i j) c')
rel_pos = rearrange(grid, 'i ... -> i 1 ...') - rearrange(grid, 'j ... -> 1 j ...')
rel_pos += window_size - 1
rel_pos_indices = (rel_pos * torch.tensor([2 * window_size - 1, 1])).sum(dim = -1)
rel_pos_indices = F.pad(rel_pos_indices, (num_registers, 0, num_registers, 0), value = num_rel_pos_bias)
self.register_buffer('rel_pos_indices', rel_pos_indices, persistent = False)
def forward(self, x):
device, h, bias_indices = x.device, self.heads, self.rel_pos_indices
x = self.norm(x)
# project for queries, keys, values
q, k, v = self.to_qkv(x).chunk(3, dim = -1)
# split heads
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
# scale
q = q * self.scale
# sim
sim = einsum('b h i d, b h j d -> b h i j', q, k)
# add positional bias
bias = self.rel_pos_bias(bias_indices)
sim = sim + rearrange(bias, 'i j h -> h i j')
# attention
attn = self.attend(sim)
# aggregate
out = einsum('b h i j, b h j d -> b h i d', attn, v)
# combine heads out
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class MaxViT(Module):
def __init__(
self,
*,
num_classes,
dim,
depth,
dim_head = 32,
dim_conv_stem = None,
window_size = 7,
mbconv_expansion_rate = 4,
mbconv_shrinkage_rate = 0.25,
dropout = 0.1,
channels = 3,
num_register_tokens = 4
):
super().__init__()
assert isinstance(depth, tuple), 'depth needs to be tuple if integers indicating number of transformer blocks at that stage'
assert num_register_tokens > 0
# convolutional stem
dim_conv_stem = default(dim_conv_stem, dim)
self.conv_stem = Sequential(
nn.Conv2d(channels, dim_conv_stem, 3, stride = 2, padding = 1),
nn.Conv2d(dim_conv_stem, dim_conv_stem, 3, padding = 1)
)
# variables
num_stages = len(depth)
dims = tuple(map(lambda i: (2 ** i) * dim, range(num_stages)))
dims = (dim_conv_stem, *dims)
dim_pairs = tuple(zip(dims[:-1], dims[1:]))
self.layers = nn.ModuleList([])
# window size
self.window_size = window_size
self.register_tokens = nn.ParameterList([])
# iterate through stages
for ind, ((layer_dim_in, layer_dim), layer_depth) in enumerate(zip(dim_pairs, depth)):
for stage_ind in range(layer_depth):
is_first = stage_ind == 0
stage_dim_in = layer_dim_in if is_first else layer_dim
conv = MBConv(
stage_dim_in,
layer_dim,
downsample = is_first,
expansion_rate = mbconv_expansion_rate,
shrinkage_rate = mbconv_shrinkage_rate
)
block_attn = Attention(dim = layer_dim, dim_head = dim_head, dropout = dropout, window_size = window_size, num_registers = num_register_tokens)
block_ff = FeedForward(dim = layer_dim, dropout = dropout)
grid_attn = Attention(dim = layer_dim, dim_head = dim_head, dropout = dropout, window_size = window_size, num_registers = num_register_tokens)
grid_ff = FeedForward(dim = layer_dim, dropout = dropout)
register_tokens = nn.Parameter(torch.randn(num_register_tokens, layer_dim))
self.layers.append(ModuleList([
conv,
ModuleList([block_attn, block_ff]),
ModuleList([grid_attn, grid_ff])
]))
self.register_tokens.append(register_tokens)
# mlp head out
self.mlp_head = nn.Sequential(
Reduce('b d h w -> b d', 'mean'),
nn.LayerNorm(dims[-1]),
nn.Linear(dims[-1], num_classes)
)
def forward(self, x):
b, w = x.shape[0], self.window_size
x = self.conv_stem(x)
for (conv, (block_attn, block_ff), (grid_attn, grid_ff)), register_tokens in zip(self.layers, self.register_tokens):
x = conv(x)
# block-like attention
x = rearrange(x, 'b d (x w1) (y w2) -> b x y w1 w2 d', w1 = w, w2 = w)
# prepare register tokens
r = repeat(register_tokens, 'n d -> b x y n d', b = b, x = x.shape[1],y = x.shape[2])
r, register_batch_ps = pack_one(r, '* n d')
x, window_ps = pack_one(x, 'b x y * d')
x, batch_ps = pack_one(x, '* n d')
x, register_ps = pack([r, x], 'b * d')
x = block_attn(x) + x
x = block_ff(x) + x
r, x = unpack(x, register_ps, 'b * d')
x = unpack_one(x, batch_ps, '* n d')
x = unpack_one(x, window_ps, 'b x y * d')
x = rearrange(x, 'b x y w1 w2 d -> b d (x w1) (y w2)')
r = unpack_one(r, register_batch_ps, '* n d')
# grid-like attention
x = rearrange(x, 'b d (w1 x) (w2 y) -> b x y w1 w2 d', w1 = w, w2 = w)
# prepare register tokens
r = reduce(r, 'b x y n d -> b n d', 'mean')
r = repeat(r, 'b n d -> b x y n d', x = x.shape[1], y = x.shape[2])
r, register_batch_ps = pack_one(r, '* n d')
x, window_ps = pack_one(x, 'b x y * d')
x, batch_ps = pack_one(x, '* n d')
x, register_ps = pack([r, x], 'b * d')
x = grid_attn(x) + x
r, x = unpack(x, register_ps, 'b * d')
x = grid_ff(x) + x
x = unpack_one(x, batch_ps, '* n d')
x = unpack_one(x, window_ps, 'b x y * d')
x = rearrange(x, 'b x y w1 w2 d -> b d (w1 x) (w2 y)')
return self.mlp_head(x)

View File

@@ -13,29 +13,20 @@ def conv_1x1_bn(inp, oup):
nn.SiLU()
)
def conv_nxn_bn(inp, oup, kernal_size=3, stride=1):
def conv_nxn_bn(inp, oup, kernel_size=3, stride=1):
return nn.Sequential(
nn.Conv2d(inp, oup, kernal_size, stride, 1, bias=False),
nn.Conv2d(inp, oup, kernel_size, stride, 1, bias=False),
nn.BatchNorm2d(oup),
nn.SiLU()
)
# classes
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout=0.):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.SiLU(),
nn.Dropout(dropout),
@@ -53,6 +44,7 @@ class Attention(nn.Module):
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim=-1)
self.dropout = nn.Dropout(dropout)
@@ -64,9 +56,10 @@ class Attention(nn.Module):
)
def forward(self, x):
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim=-1)
q, k, v = map(lambda t: rearrange(
t, 'b p n (h d) -> b p h n d', h=self.heads), qkv)
q, k, v = map(lambda t: rearrange(t, 'b p n (h d) -> b p h n d', h=self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
@@ -88,8 +81,8 @@ class Transformer(nn.Module):
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, Attention(dim, heads, dim_head, dropout)),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout))
Attention(dim, heads, dim_head, dropout),
FeedForward(dim, mlp_dim, dropout)
]))
def forward(self, x):
@@ -167,11 +160,9 @@ class MobileViTBlock(nn.Module):
# Global representations
_, _, h, w = x.shape
x = rearrange(x, 'b d (h ph) (w pw) -> b (ph pw) (h w) d',
ph=self.ph, pw=self.pw)
x = self.transformer(x)
x = rearrange(x, 'b (ph pw) (h w) d -> b d (h ph) (w pw)',
h=h//self.ph, w=w//self.pw, ph=self.ph, pw=self.pw)
x = rearrange(x, 'b d (h ph) (w pw) -> b (ph pw) (h w) d', ph=self.ph, pw=self.pw)
x = self.transformer(x)
x = rearrange(x, 'b (ph pw) (h w) d -> b d (h ph) (w pw)', h=h//self.ph, w=w//self.pw, ph=self.ph, pw=self.pw)
# Fusion
x = self.conv3(x)

186
vit_pytorch/mp3.py Normal file
View File

@@ -0,0 +1,186 @@
import torch
from torch import nn, einsum
import torch.nn.functional as F
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
# helpers
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def pair(t):
return t if isinstance(t, tuple) else (t, t)
# positional embedding
def posemb_sincos_2d(patches, temperature = 10000, dtype = torch.float32):
_, h, w, dim, device, dtype = *patches.shape, patches.device, patches.dtype
y, x = torch.meshgrid(torch.arange(h, device = device), torch.arange(w, device = device), indexing = 'ij')
assert (dim % 4) == 0, 'feature dimension must be multiple of 4 for sincos emb'
omega = torch.arange(dim // 4, device = device) / (dim // 4 - 1)
omega = 1. / (temperature ** omega)
y = y.flatten()[:, None] * omega[None, :]
x = x.flatten()[:, None] * omega[None, :]
pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim = 1)
return pe.type(dtype)
# feedforward
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
# (cross)attention
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.norm = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias = False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x, context = None):
b, n, _, h = *x.shape, self.heads
x = self.norm(x)
context = self.norm(context) if exists(context) else x
qkv = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1))
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout),
FeedForward(dim, mlp_dim, dropout = dropout)
]))
def forward(self, x, context = None):
for attn, ff in self.layers:
x = attn(x, context = context) + x
x = ff(x) + x
return x
class ViT(nn.Module):
def __init__(self, *, num_classes, image_size, patch_size, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64, dropout = 0.):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_height // patch_height) * (image_width // patch_width)
patch_dim = channels * patch_height * patch_width
self.dim = dim
self.num_patches = num_patches
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b h w (p1 p2 c)', p1 = patch_height, p2 = patch_width),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim),
)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
self.to_latent = nn.Identity()
self.linear_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def forward(self, img):
*_, h, w, dtype = *img.shape, img.dtype
x = self.to_patch_embedding(img)
pe = posemb_sincos_2d(x)
x = rearrange(x, 'b ... d -> b (...) d') + pe
x = self.transformer(x)
x = x.mean(dim = 1)
x = self.to_latent(x)
return self.linear_head(x)
# Masked Position Prediction Pre-Training
class MP3(nn.Module):
def __init__(self, vit: ViT, masking_ratio):
super().__init__()
self.vit = vit
assert masking_ratio > 0 and masking_ratio < 1, 'masking ratio must be kept between 0 and 1'
self.masking_ratio = masking_ratio
dim = vit.dim
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, vit.num_patches)
)
def forward(self, img):
device = img.device
tokens = self.vit.to_patch_embedding(img)
tokens = rearrange(tokens, 'b ... d -> b (...) d')
batch, num_patches, *_ = tokens.shape
# Masking
num_masked = int(self.masking_ratio * num_patches)
rand_indices = torch.rand(batch, num_patches, device = device).argsort(dim = -1)
masked_indices, unmasked_indices = rand_indices[:, :num_masked], rand_indices[:, num_masked:]
batch_range = torch.arange(batch, device = device)[:, None]
tokens_unmasked = tokens[batch_range, unmasked_indices]
attended_tokens = self.vit.transformer(tokens, tokens_unmasked)
logits = rearrange(self.mlp_head(attended_tokens), 'b n d -> (b n) d')
# Define labels
labels = repeat(torch.arange(num_patches, device = device), 'n -> (b n)', b = batch)
loss = F.cross_entropy(logits, labels)
return loss

View File

@@ -96,6 +96,9 @@ class MPP(nn.Module):
self.loss = MPPLoss(patch_size, channels, output_channel_bits,
max_pixel_val, mean, std)
# extract patching function
self.patch_to_emb = nn.Sequential(transformer.to_patch_embedding[1:])
# output transformation
self.to_bits = nn.Linear(dim, 2**(output_channel_bits * channels))
@@ -151,7 +154,7 @@ class MPP(nn.Module):
masked_input[bool_mask_replace] = self.mask_token
# linear embedding of patches
masked_input = transformer.to_patch_embedding[-1](masked_input)
masked_input = self.patch_to_emb(masked_input)
# add cls token to input sequence
b, n, _ = masked_input.shape

396
vit_pytorch/na_vit.py Normal file
View File

@@ -0,0 +1,396 @@
from __future__ import annotations
from functools import partial
from typing import List
import torch
import torch.nn.functional as F
from torch import nn, Tensor
from torch.nn.utils.rnn import pad_sequence as orig_pad_sequence
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
# helpers
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def always(val):
return lambda *args: val
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def divisible_by(numer, denom):
return (numer % denom) == 0
# auto grouping images
def group_images_by_max_seq_len(
images: List[Tensor],
patch_size: int,
calc_token_dropout = None,
max_seq_len = 2048
) -> List[List[Tensor]]:
calc_token_dropout = default(calc_token_dropout, always(0.))
groups = []
group = []
seq_len = 0
if isinstance(calc_token_dropout, (float, int)):
calc_token_dropout = always(calc_token_dropout)
for image in images:
assert isinstance(image, Tensor)
image_dims = image.shape[-2:]
ph, pw = map(lambda t: t // patch_size, image_dims)
image_seq_len = (ph * pw)
image_seq_len = int(image_seq_len * (1 - calc_token_dropout(*image_dims)))
assert image_seq_len <= max_seq_len, f'image with dimensions {image_dims} exceeds maximum sequence length'
if (seq_len + image_seq_len) > max_seq_len:
groups.append(group)
group = []
seq_len = 0
group.append(image)
seq_len += image_seq_len
if len(group) > 0:
groups.append(group)
return groups
# normalization
# they use layernorm without bias, something that pytorch does not offer
class LayerNorm(nn.Module):
def __init__(self, dim):
super().__init__()
self.gamma = nn.Parameter(torch.ones(dim))
self.register_buffer('beta', torch.zeros(dim))
def forward(self, x):
return F.layer_norm(x, x.shape[-1:], self.gamma, self.beta)
# they use a query-key normalization that is equivalent to rms norm (no mean-centering, learned gamma), from vit 22B paper
class RMSNorm(nn.Module):
def __init__(self, heads, dim):
super().__init__()
self.scale = dim ** 0.5
self.gamma = nn.Parameter(torch.ones(heads, 1, dim))
def forward(self, x):
normed = F.normalize(x, dim = -1)
return normed * self.scale * self.gamma
# feedforward
def FeedForward(dim, hidden_dim, dropout = 0.):
return nn.Sequential(
LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.norm = LayerNorm(dim)
self.q_norm = RMSNorm(heads, dim_head)
self.k_norm = RMSNorm(heads, dim_head)
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_q = nn.Linear(dim, inner_dim, bias = False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim, bias = False),
nn.Dropout(dropout)
)
def forward(
self,
x,
context = None,
mask = None,
attn_mask = None
):
x = self.norm(x)
kv_input = default(context, x)
qkv = (self.to_q(x), *self.to_kv(kv_input).chunk(2, dim = -1))
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
q = self.q_norm(q)
k = self.k_norm(k)
dots = torch.matmul(q, k.transpose(-1, -2))
if exists(mask):
mask = rearrange(mask, 'b j -> b 1 1 j')
dots = dots.masked_fill(~mask, -torch.finfo(dots.dtype).max)
if exists(attn_mask):
dots = dots.masked_fill(~attn_mask, -torch.finfo(dots.dtype).max)
attn = self.attend(dots)
attn = self.dropout(attn)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout),
FeedForward(dim, mlp_dim, dropout = dropout)
]))
self.norm = LayerNorm(dim)
def forward(
self,
x,
mask = None,
attn_mask = None
):
for attn, ff in self.layers:
x = attn(x, mask = mask, attn_mask = attn_mask) + x
x = ff(x) + x
return self.norm(x)
class NaViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0., token_dropout_prob = None):
super().__init__()
image_height, image_width = pair(image_size)
# what percent of tokens to dropout
# if int or float given, then assume constant dropout prob
# otherwise accept a callback that in turn calculates dropout prob from height and width
self.calc_token_dropout = None
if callable(token_dropout_prob):
self.calc_token_dropout = token_dropout_prob
elif isinstance(token_dropout_prob, (float, int)):
assert 0. <= token_dropout_prob < 1.
token_dropout_prob = float(token_dropout_prob)
self.calc_token_dropout = lambda height, width: token_dropout_prob
# calculate patching related stuff
assert divisible_by(image_height, patch_size) and divisible_by(image_width, patch_size), 'Image dimensions must be divisible by the patch size.'
patch_height_dim, patch_width_dim = (image_height // patch_size), (image_width // patch_size)
patch_dim = channels * (patch_size ** 2)
self.channels = channels
self.patch_size = patch_size
self.to_patch_embedding = nn.Sequential(
LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
LayerNorm(dim),
)
self.pos_embed_height = nn.Parameter(torch.randn(patch_height_dim, dim))
self.pos_embed_width = nn.Parameter(torch.randn(patch_width_dim, dim))
self.dropout = nn.Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
# final attention pooling queries
self.attn_pool_queries = nn.Parameter(torch.randn(dim))
self.attn_pool = Attention(dim = dim, dim_head = dim_head, heads = heads)
# output to logits
self.to_latent = nn.Identity()
self.mlp_head = nn.Sequential(
LayerNorm(dim),
nn.Linear(dim, num_classes, bias = False)
)
@property
def device(self):
return next(self.parameters()).device
def forward(
self,
batched_images: List[Tensor] | List[List[Tensor]], # assume different resolution images already grouped correctly
group_images = False,
group_max_seq_len = 2048
):
p, c, device, has_token_dropout = self.patch_size, self.channels, self.device, exists(self.calc_token_dropout) and self.training
arange = partial(torch.arange, device = device)
pad_sequence = partial(orig_pad_sequence, batch_first = True)
# auto pack if specified
if group_images:
batched_images = group_images_by_max_seq_len(
batched_images,
patch_size = self.patch_size,
calc_token_dropout = self.calc_token_dropout if self.training else None,
max_seq_len = group_max_seq_len
)
# if List[Tensor] is not grouped -> List[List[Tensor]]
if torch.is_tensor(batched_images[0]):
batched_images = [batched_images]
# process images into variable lengthed sequences with attention mask
num_images = []
batched_sequences = []
batched_positions = []
batched_image_ids = []
for images in batched_images:
num_images.append(len(images))
sequences = []
positions = []
image_ids = torch.empty((0,), device = device, dtype = torch.long)
for image_id, image in enumerate(images):
assert image.ndim ==3 and image.shape[0] == c
image_dims = image.shape[-2:]
assert all([divisible_by(dim, p) for dim in image_dims]), f'height and width {image_dims} of images must be divisible by patch size {p}'
ph, pw = map(lambda dim: dim // p, image_dims)
pos = torch.stack(torch.meshgrid((
arange(ph),
arange(pw)
), indexing = 'ij'), dim = -1)
pos = rearrange(pos, 'h w c -> (h w) c')
seq = rearrange(image, 'c (h p1) (w p2) -> (h w) (c p1 p2)', p1 = p, p2 = p)
seq_len = seq.shape[-2]
if has_token_dropout:
token_dropout = self.calc_token_dropout(*image_dims)
num_keep = max(1, int(seq_len * (1 - token_dropout)))
keep_indices = torch.randn((seq_len,), device = device).topk(num_keep, dim = -1).indices
seq = seq[keep_indices]
pos = pos[keep_indices]
image_ids = F.pad(image_ids, (0, seq.shape[-2]), value = image_id)
sequences.append(seq)
positions.append(pos)
batched_image_ids.append(image_ids)
batched_sequences.append(torch.cat(sequences, dim = 0))
batched_positions.append(torch.cat(positions, dim = 0))
# derive key padding mask
lengths = torch.tensor([seq.shape[-2] for seq in batched_sequences], device = device, dtype = torch.long)
seq_arange = arange(lengths.amax().item())
key_pad_mask = rearrange(seq_arange, 'n -> 1 n') < rearrange(lengths, 'b -> b 1')
# derive attention mask, and combine with key padding mask from above
batched_image_ids = pad_sequence(batched_image_ids)
attn_mask = rearrange(batched_image_ids, 'b i -> b 1 i 1') == rearrange(batched_image_ids, 'b j -> b 1 1 j')
attn_mask = attn_mask & rearrange(key_pad_mask, 'b j -> b 1 1 j')
# combine patched images as well as the patched width / height positions for 2d positional embedding
patches = pad_sequence(batched_sequences)
patch_positions = pad_sequence(batched_positions)
# need to know how many images for final attention pooling
num_images = torch.tensor(num_images, device = device, dtype = torch.long)
# to patches
x = self.to_patch_embedding(patches)
# factorized 2d absolute positional embedding
h_indices, w_indices = patch_positions.unbind(dim = -1)
h_pos = self.pos_embed_height[h_indices]
w_pos = self.pos_embed_width[w_indices]
x = x + h_pos + w_pos
# embed dropout
x = self.dropout(x)
# attention
x = self.transformer(x, attn_mask = attn_mask)
# do attention pooling at the end
max_queries = num_images.amax().item()
queries = repeat(self.attn_pool_queries, 'd -> b n d', n = max_queries, b = x.shape[0])
# attention pool mask
image_id_arange = arange(max_queries)
attn_pool_mask = rearrange(image_id_arange, 'i -> i 1') == rearrange(batched_image_ids, 'b j -> b 1 j')
attn_pool_mask = attn_pool_mask & rearrange(key_pad_mask, 'b j -> b 1 j')
attn_pool_mask = rearrange(attn_pool_mask, 'b i j -> b 1 i j')
# attention pool
x = self.attn_pool(queries, context = x, attn_mask = attn_pool_mask) + queries
x = rearrange(x, 'b n d -> (b n) d')
# each batch element may not have same amount of images
is_images = image_id_arange < rearrange(num_images, 'b -> b 1')
is_images = rearrange(is_images, 'b n -> (b n)')
x = x[is_images]
# project out to logits
x = self.to_latent(x)
return self.mlp_head(x)

View File

@@ -0,0 +1,325 @@
from __future__ import annotations
from typing import List
from functools import partial
import torch
import packaging.version as pkg_version
if pkg_version.parse(torch.__version__) < pkg_version.parse('2.4'):
print('nested tensor NaViT was tested on pytorch 2.4')
from torch import nn, Tensor
import torch.nn.functional as F
from torch.nn import Module, ModuleList
from torch.nested import nested_tensor
from einops import rearrange
from einops.layers.torch import Rearrange
# helpers
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def divisible_by(numer, denom):
return (numer % denom) == 0
# feedforward
def FeedForward(dim, hidden_dim, dropout = 0.):
return nn.Sequential(
nn.LayerNorm(dim, bias = False),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
class Attention(Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
self.norm = nn.LayerNorm(dim, bias = False)
dim_inner = heads * dim_head
self.heads = heads
self.dim_head = dim_head
self.to_queries = nn.Linear(dim, dim_inner, bias = False)
self.to_keys = nn.Linear(dim, dim_inner, bias = False)
self.to_values = nn.Linear(dim, dim_inner, bias = False)
# in the paper, they employ qk rmsnorm, a way to stabilize attention
# will use layernorm in place of rmsnorm, which has been shown to work in certain papers. requires l2norm on non-ragged dimension to be supported in nested tensors
self.query_norm = nn.LayerNorm(dim_head, bias = False)
self.key_norm = nn.LayerNorm(dim_head, bias = False)
self.dropout = dropout
self.to_out = nn.Linear(dim_inner, dim, bias = False)
def forward(
self,
x,
context: Tensor | None = None
):
x = self.norm(x)
# for attention pooling, one query pooling to entire sequence
context = default(context, x)
# queries, keys, values
query = self.to_queries(x)
key = self.to_keys(context)
value = self.to_values(context)
# split heads
def split_heads(t):
return t.unflatten(-1, (self.heads, self.dim_head))
def transpose_head_seq(t):
return t.transpose(1, 2)
query, key, value = map(split_heads, (query, key, value))
# qk norm for attention stability
query = self.query_norm(query)
key = self.key_norm(key)
query, key, value = map(transpose_head_seq, (query, key, value))
# attention
out = F.scaled_dot_product_attention(
query, key, value,
dropout_p = self.dropout if self.training else 0.
)
# merge heads
out = out.transpose(1, 2).flatten(-2)
return self.to_out(out)
class Transformer(Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
self.layers = ModuleList([])
for _ in range(depth):
self.layers.append(ModuleList([
Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout),
FeedForward(dim, mlp_dim, dropout = dropout)
]))
self.norm = nn.LayerNorm(dim, bias = False)
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return self.norm(x)
class NaViT(Module):
def __init__(
self,
*,
image_size,
patch_size,
num_classes,
dim,
depth,
heads,
mlp_dim,
channels = 3,
dim_head = 64,
dropout = 0.,
emb_dropout = 0.,
token_dropout_prob: float | None = None
):
super().__init__()
image_height, image_width = pair(image_size)
# what percent of tokens to dropout
# if int or float given, then assume constant dropout prob
# otherwise accept a callback that in turn calculates dropout prob from height and width
self.token_dropout_prob = token_dropout_prob
# calculate patching related stuff
assert divisible_by(image_height, patch_size) and divisible_by(image_width, patch_size), 'Image dimensions must be divisible by the patch size.'
patch_height_dim, patch_width_dim = (image_height // patch_size), (image_width // patch_size)
patch_dim = channels * (patch_size ** 2)
self.channels = channels
self.patch_size = patch_size
self.to_patches = Rearrange('c (h p1) (w p2) -> h w (c p1 p2)', p1 = patch_size, p2 = patch_size)
self.to_patch_embedding = nn.Sequential(
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim),
)
self.pos_embed_height = nn.Parameter(torch.randn(patch_height_dim, dim))
self.pos_embed_width = nn.Parameter(torch.randn(patch_width_dim, dim))
self.dropout = nn.Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
# final attention pooling queries
self.attn_pool_queries = nn.Parameter(torch.randn(dim))
self.attn_pool = Attention(dim = dim, dim_head = dim_head, heads = heads)
# output to logits
self.to_latent = nn.Identity()
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim, bias = False),
nn.Linear(dim, num_classes, bias = False)
)
@property
def device(self):
return next(self.parameters()).device
def forward(
self,
images: List[Tensor], # different resolution images
):
batch, device = len(images), self.device
arange = partial(torch.arange, device = device)
assert all([image.ndim == 3 and image.shape[0] == self.channels for image in images]), f'all images must have {self.channels} channels and number of dimensions of 3 (channels, height, width)'
all_patches = [self.to_patches(image) for image in images]
# prepare factorized positional embedding height width indices
positions = []
for patches in all_patches:
patch_height, patch_width = patches.shape[:2]
hw_indices = torch.stack(torch.meshgrid((arange(patch_height), arange(patch_width)), indexing = 'ij'), dim = -1)
hw_indices = rearrange(hw_indices, 'h w c -> (h w) c')
positions.append(hw_indices)
# need the sizes to compute token dropout + positional embedding
tokens = [rearrange(patches, 'h w d -> (h w) d') for patches in all_patches]
# handle token dropout
seq_lens = torch.tensor([i.shape[0] for i in tokens], device = device)
if self.training and self.token_dropout_prob > 0:
keep_seq_lens = ((1. - self.token_dropout_prob) * seq_lens).int().clamp(min = 1)
kept_tokens = []
kept_positions = []
for one_image_tokens, one_image_positions, seq_len, num_keep in zip(tokens, positions, seq_lens, keep_seq_lens):
keep_indices = torch.randn((seq_len,), device = device).topk(num_keep, dim = -1).indices
one_image_kept_tokens = one_image_tokens[keep_indices]
one_image_kept_positions = one_image_positions[keep_indices]
kept_tokens.append(one_image_kept_tokens)
kept_positions.append(one_image_kept_positions)
tokens, positions, seq_lens = kept_tokens, kept_positions, keep_seq_lens
# add all height and width factorized positions
height_indices, width_indices = torch.cat(positions).unbind(dim = -1)
height_embed, width_embed = self.pos_embed_height[height_indices], self.pos_embed_width[width_indices]
pos_embed = height_embed + width_embed
# use nested tensor for transformers and save on padding computation
tokens = torch.cat(tokens)
# linear projection to patch embeddings
tokens = self.to_patch_embedding(tokens)
# absolute positions
tokens = tokens + pos_embed
tokens = nested_tensor(tokens.split(seq_lens.tolist()), layout = torch.jagged, device = device)
# embedding dropout
tokens = self.dropout(tokens)
# transformer
tokens = self.transformer(tokens)
# attention pooling
# will use a jagged tensor for queries, as SDPA requires all inputs to be jagged, or not
attn_pool_queries = [rearrange(self.attn_pool_queries, '... -> 1 ...')] * batch
attn_pool_queries = nested_tensor(attn_pool_queries, layout = torch.jagged)
pooled = self.attn_pool(attn_pool_queries, tokens)
# back to unjagged
logits = torch.stack(pooled.unbind())
logits = rearrange(logits, 'b 1 d -> b d')
logits = self.to_latent(logits)
return self.mlp_head(logits)
# quick test
if __name__ == '__main__':
v = NaViT(
image_size = 256,
patch_size = 32,
num_classes = 1000,
dim = 1024,
depth = 6,
heads = 16,
mlp_dim = 2048,
dropout = 0.,
emb_dropout = 0.,
token_dropout_prob = 0.1
)
# 5 images of different resolutions - List[Tensor]
images = [
torch.randn(3, 256, 256), torch.randn(3, 128, 128),
torch.randn(3, 128, 256), torch.randn(3, 256, 128),
torch.randn(3, 64, 256)
]
assert v(images).shape == (5, 1000)

View File

@@ -0,0 +1,329 @@
from __future__ import annotations
from typing import List
from functools import partial
import torch
from torch import nn, Tensor
import torch.nn.functional as F
from torch.nn import Module, ModuleList
from torch.nested import nested_tensor
from einops import rearrange
from einops.layers.torch import Rearrange
# helpers
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def divisible_by(numer, denom):
return (numer % denom) == 0
# feedforward
def FeedForward(dim, hidden_dim, dropout = 0.):
return nn.Sequential(
nn.LayerNorm(dim, bias = False),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
class Attention(Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
self.norm = nn.LayerNorm(dim, bias = False)
dim_inner = heads * dim_head
self.heads = heads
self.dim_head = dim_head
self.to_queries = nn.Linear(dim, dim_inner, bias = False)
self.to_keys = nn.Linear(dim, dim_inner, bias = False)
self.to_values = nn.Linear(dim, dim_inner, bias = False)
# in the paper, they employ qk rmsnorm, a way to stabilize attention
# will use layernorm in place of rmsnorm, which has been shown to work in certain papers. requires l2norm on non-ragged dimension to be supported in nested tensors
self.query_norm = nn.LayerNorm(dim_head, bias = False)
self.key_norm = nn.LayerNorm(dim_head, bias = False)
self.dropout = dropout
self.to_out = nn.Linear(dim_inner, dim, bias = False)
def forward(
self,
x,
context: Tensor | None = None
):
x = self.norm(x)
# for attention pooling, one query pooling to entire sequence
context = default(context, x)
# queries, keys, values
query = self.to_queries(x)
key = self.to_keys(context)
value = self.to_values(context)
# split heads
def split_heads(t):
return t.unflatten(-1, (self.heads, self.dim_head)).transpose(1, 2).contiguous()
query, key, value = map(split_heads, (query, key, value))
# qk norm for attention stability
query = self.query_norm(query)
key = self.key_norm(key)
# attention
out = F.scaled_dot_product_attention(
query, key, value,
dropout_p = self.dropout if self.training else 0.
)
# merge heads
out = out.transpose(1, 2).flatten(-2)
return self.to_out(out)
class Transformer(Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
self.layers = ModuleList([])
for _ in range(depth):
self.layers.append(ModuleList([
Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout),
FeedForward(dim, mlp_dim, dropout = dropout)
]))
self.norm = nn.LayerNorm(dim, bias = False)
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return self.norm(x)
class NaViT(Module):
def __init__(
self,
*,
image_size,
max_frames,
patch_size,
frame_patch_size,
num_classes,
dim,
depth,
heads,
mlp_dim,
channels = 3,
dim_head = 64,
dropout = 0.,
emb_dropout = 0.,
token_dropout_prob: float | None = None
):
super().__init__()
image_height, image_width = pair(image_size)
# what percent of tokens to dropout
# if int or float given, then assume constant dropout prob
# otherwise accept a callback that in turn calculates dropout prob from height and width
self.token_dropout_prob = token_dropout_prob
# calculate patching related stuff
assert divisible_by(image_height, patch_size) and divisible_by(image_width, patch_size), 'Image dimensions must be divisible by the patch size.'
assert divisible_by(max_frames, frame_patch_size)
patch_frame_dim, patch_height_dim, patch_width_dim = (max_frames // frame_patch_size), (image_height // patch_size), (image_width // patch_size)
patch_dim = channels * (patch_size ** 2) * frame_patch_size
self.channels = channels
self.patch_size = patch_size
self.to_patches = Rearrange('c (f pf) (h p1) (w p2) -> f h w (c p1 p2 pf)', p1 = patch_size, p2 = patch_size, pf = frame_patch_size)
self.to_patch_embedding = nn.Sequential(
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim),
)
self.pos_embed_frame = nn.Parameter(torch.randn(patch_frame_dim, dim))
self.pos_embed_height = nn.Parameter(torch.randn(patch_height_dim, dim))
self.pos_embed_width = nn.Parameter(torch.randn(patch_width_dim, dim))
self.dropout = nn.Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
# final attention pooling queries
self.attn_pool_queries = nn.Parameter(torch.randn(dim))
self.attn_pool = Attention(dim = dim, dim_head = dim_head, heads = heads)
# output to logits
self.to_latent = nn.Identity()
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim, bias = False),
nn.Linear(dim, num_classes, bias = False)
)
@property
def device(self):
return next(self.parameters()).device
def forward(
self,
volumes: List[Tensor], # different resolution images / CT scans
):
batch, device = len(images), self.device
arange = partial(torch.arange, device = device)
assert all([volume.ndim == 4 and volume.shape[0] == self.channels for volume in volumes]), f'all volumes must have {self.channels} channels and number of dimensions of {self.channels} (channels, frame, height, width)'
all_patches = [self.to_patches(volume) for volume in volumes]
# prepare factorized positional embedding height width indices
positions = []
for patches in all_patches:
patch_frame, patch_height, patch_width = patches.shape[:3]
fhw_indices = torch.stack(torch.meshgrid((arange(patch_frame), arange(patch_height), arange(patch_width)), indexing = 'ij'), dim = -1)
fhw_indices = rearrange(fhw_indices, 'f h w c -> (f h w) c')
positions.append(fhw_indices)
# need the sizes to compute token dropout + positional embedding
tokens = [rearrange(patches, 'f h w d -> (f h w) d') for patches in all_patches]
# handle token dropout
seq_lens = torch.tensor([i.shape[0] for i in tokens], device = device)
if self.training and self.token_dropout_prob > 0:
keep_seq_lens = ((1. - self.token_dropout_prob) * seq_lens).int().clamp(min = 1)
kept_tokens = []
kept_positions = []
for one_image_tokens, one_image_positions, seq_len, num_keep in zip(tokens, positions, seq_lens, keep_seq_lens):
keep_indices = torch.randn((seq_len,), device = device).topk(num_keep, dim = -1).indices
one_image_kept_tokens = one_image_tokens[keep_indices]
one_image_kept_positions = one_image_positions[keep_indices]
kept_tokens.append(one_image_kept_tokens)
kept_positions.append(one_image_kept_positions)
tokens, positions, seq_lens = kept_tokens, kept_positions, keep_seq_lens
# add all height and width factorized positions
frame_indices, height_indices, width_indices = torch.cat(positions).unbind(dim = -1)
frame_embed, height_embed, width_embed = self.pos_embed_frame[frame_indices], self.pos_embed_height[height_indices], self.pos_embed_width[width_indices]
pos_embed = frame_embed + height_embed + width_embed
# use nested tensor for transformers and save on padding computation
tokens = torch.cat(tokens)
# linear projection to patch embeddings
tokens = self.to_patch_embedding(tokens)
# absolute positions
tokens = tokens + pos_embed
tokens = nested_tensor(tokens.split(seq_len.tolist()), layout = torch.jagged, device = device)
# embedding dropout
tokens = self.dropout(tokens)
# transformer
tokens = self.transformer(tokens)
# attention pooling
# will use a jagged tensor for queries, as SDPA requires all inputs to be jagged, or not
attn_pool_queries = [rearrange(self.attn_pool_queries, '... -> 1 ...')] * batch
attn_pool_queries = nested_tensor(attn_pool_queries, layout = torch.jagged)
pooled = self.attn_pool(attn_pool_queries, tokens)
# back to unjagged
logits = torch.stack(pooled.unbind())
logits = rearrange(logits, 'b 1 d -> b d')
logits = self.to_latent(logits)
return self.mlp_head(logits)
# quick test
if __name__ == '__main__':
# works for torch 2.2.2
v = NaViT(
image_size = 256,
max_frames = 8,
patch_size = 32,
frame_patch_size = 2,
num_classes = 1000,
dim = 1024,
depth = 6,
heads = 16,
mlp_dim = 2048,
dropout = 0.,
emb_dropout = 0.,
token_dropout_prob = 0.1
)
# 5 volumetric data (videos or CT scans) of different resolutions - List[Tensor]
# for now, you'll have to correctly place images in same batch element as to not exceed maximum allowed sequence length for self-attention w/ masking
images = [
torch.randn(3, 2, 256, 256), torch.randn(3, 8, 128, 128),
torch.randn(3, 4, 128, 256), torch.randn(3, 2, 256, 128),
torch.randn(3, 4, 64, 256)
]
assert v(images).shape == (5, 1000)

View File

@@ -24,19 +24,11 @@ class LayerNorm(nn.Module):
mean = torch.mean(x, dim = 1, keepdim = True)
return (x - mean) / (var + self.eps).sqrt() * self.g + self.b
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, mlp_mult = 4, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
LayerNorm(dim),
nn.Conv2d(dim, dim * mlp_mult, 1),
nn.GELU(),
nn.Dropout(dropout),
@@ -54,6 +46,7 @@ class Attention(nn.Module):
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Conv2d(dim, inner_dim * 3, 1, bias = False)
@@ -66,6 +59,8 @@ class Attention(nn.Module):
def forward(self, x):
b, c, h, w, heads = *x.shape, self.heads
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = 1)
q, k, v = map(lambda t: rearrange(t, 'b (h d) x y -> b h (x y) d', h = heads), qkv)
@@ -93,8 +88,8 @@ class Transformer(nn.Module):
for _ in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, Attention(dim, heads = heads, dropout = dropout)),
PreNorm(dim, FeedForward(dim, mlp_mult, dropout = dropout))
Attention(dim, heads = heads, dropout = dropout),
FeedForward(dim, mlp_mult, dropout = dropout)
]))
def forward(self, x):
*_, h, w = x.shape
@@ -131,7 +126,7 @@ class NesT(nn.Module):
fmap_size = image_size // patch_size
blocks = 2 ** (num_hierarchies - 1)
seq_len = (fmap_size // blocks) ** 2 # sequence length is held constant across heirarchy
seq_len = (fmap_size // blocks) ** 2 # sequence length is held constant across hierarchy
hierarchies = list(reversed(range(num_hierarchies)))
mults = [2 ** i for i in reversed(hierarchies)]
@@ -144,7 +139,9 @@ class NesT(nn.Module):
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (p1 p2 c) h w', p1 = patch_size, p2 = patch_size),
LayerNorm(patch_dim),
nn.Conv2d(patch_dim, layer_dims[0], 1),
LayerNorm(layer_dims[0])
)
block_repeats = cast_tuple(block_repeats, num_hierarchies)

View File

@@ -19,18 +19,11 @@ class Parallel(nn.Module):
def forward(self, x):
return sum([fn(x) for fn in self.fns])
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
@@ -49,6 +42,7 @@ class Attention(nn.Module):
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
@@ -60,6 +54,7 @@ class Attention(nn.Module):
) if project_out else nn.Identity()
def forward(self, x):
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
@@ -77,8 +72,8 @@ class Transformer(nn.Module):
super().__init__()
self.layers = nn.ModuleList([])
attn_block = lambda: PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout))
ff_block = lambda: PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
attn_block = lambda: Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)
ff_block = lambda: FeedForward(dim, mlp_dim, dropout = dropout)
for _ in range(depth):
self.layers.append(nn.ModuleList([

View File

@@ -17,18 +17,11 @@ def conv_output_size(image_size, kernel_size, stride, padding = 0):
# classes
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
@@ -47,6 +40,7 @@ class Attention(nn.Module):
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
@@ -58,6 +52,8 @@ class Attention(nn.Module):
def forward(self, x):
b, n, _, h = *x.shape, self.heads
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)
@@ -76,8 +72,8 @@ class Transformer(nn.Module):
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout),
FeedForward(dim, mlp_dim, dropout = dropout)
]))
def forward(self, x):
for attn, ff in self.layers:

View File

@@ -3,12 +3,14 @@ from math import sqrt, pi, log
import torch
from torch import nn, einsum
import torch.nn.functional as F
from torch.cuda.amp import autocast
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
# rotary embeddings
@autocast(enabled = False)
def rotate_every_two(x):
x = rearrange(x, '... (d j) -> ... d j', j = 2)
x1, x2 = x.unbind(dim = -1)
@@ -22,6 +24,7 @@ class AxialRotaryEmbedding(nn.Module):
scales = torch.linspace(1., max_freq / 2, self.dim // 4)
self.register_buffer('scales', scales)
@autocast(enabled = False)
def forward(self, x):
device, dtype, n = x.device, x.dtype, int(sqrt(x.shape[-2]))
@@ -55,14 +58,6 @@ class DepthWiseConv2d(nn.Module):
# helper classes
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class SpatialConv(nn.Module):
def __init__(self, dim_in, dim_out, kernel, bias = False):
super().__init__()
@@ -86,6 +81,7 @@ class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0., use_glu = True):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim * 2 if use_glu else hidden_dim),
GEGLU() if use_glu else nn.GELU(),
nn.Dropout(dropout),
@@ -103,6 +99,7 @@ class Attention(nn.Module):
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
@@ -121,6 +118,9 @@ class Attention(nn.Module):
b, n, _, h = *x.shape, self.heads
to_q_kwargs = {'fmap_dims': fmap_dims} if self.use_ds_conv else {}
x = self.norm(x)
q = self.to_q(x, **to_q_kwargs)
qkv = (q, *self.to_kv(x).chunk(2, dim = -1))
@@ -162,8 +162,8 @@ class Transformer(nn.Module):
self.pos_emb = AxialRotaryEmbedding(dim_head, max_freq = image_size)
for _ in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout, use_rotary = use_rotary, use_ds_conv = use_ds_conv)),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout, use_glu = use_glu))
Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout, use_rotary = use_rotary, use_ds_conv = use_ds_conv),
FeedForward(dim, mlp_dim, dropout = dropout, use_glu = use_glu)
]))
def forward(self, x, fmap_dims):
pos_emb = self.pos_emb(x[:, 1:])

View File

@@ -33,15 +33,6 @@ class ChanLayerNorm(nn.Module):
mean = torch.mean(x, dim = 1, keepdim = True)
return (x - mean) / (var + self.eps).sqrt() * self.g + self.b
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = ChanLayerNorm(dim)
self.fn = fn
def forward(self, x):
return self.fn(self.norm(x))
class Downsample(nn.Module):
def __init__(self, dim_in, dim_out):
super().__init__()
@@ -65,6 +56,7 @@ class FeedForward(nn.Module):
super().__init__()
inner_dim = dim * expansion_factor
self.net = nn.Sequential(
ChanLayerNorm(dim),
nn.Conv2d(dim, inner_dim, 1),
nn.GELU(),
nn.Dropout(dropout),
@@ -92,6 +84,7 @@ class ScalableSelfAttention(nn.Module):
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.norm = ChanLayerNorm(dim)
self.to_q = nn.Conv2d(dim, dim_key * heads, 1, bias = False)
self.to_k = nn.Conv2d(dim, dim_key * heads, reduction_factor, stride = reduction_factor, bias = False)
self.to_v = nn.Conv2d(dim, dim_value * heads, reduction_factor, stride = reduction_factor, bias = False)
@@ -104,6 +97,8 @@ class ScalableSelfAttention(nn.Module):
def forward(self, x):
height, width, heads = *x.shape[-2:], self.heads
x = self.norm(x)
q, k, v = self.to_q(x), self.to_k(x), self.to_v(x)
# split out heads
@@ -145,6 +140,7 @@ class InteractiveWindowedSelfAttention(nn.Module):
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.norm = ChanLayerNorm(dim)
self.local_interactive_module = nn.Conv2d(dim_value * heads, dim_value * heads, 3, padding = 1)
self.to_q = nn.Conv2d(dim, dim_key * heads, 1, bias = False)
@@ -159,6 +155,8 @@ class InteractiveWindowedSelfAttention(nn.Module):
def forward(self, x):
height, width, heads, wsz = *x.shape[-2:], self.heads, self.window_size
x = self.norm(x)
wsz_h, wsz_w = default(wsz, height), default(wsz, width)
assert (height % wsz_h) == 0 and (width % wsz_w) == 0, f'height ({height}) or width ({width}) of feature map is not divisible by the window size ({wsz_h}, {wsz_w})'
@@ -217,11 +215,11 @@ class Transformer(nn.Module):
is_first = ind == 0
self.layers.append(nn.ModuleList([
PreNorm(dim, ScalableSelfAttention(dim, heads = heads, dim_key = ssa_dim_key, dim_value = ssa_dim_value, reduction_factor = ssa_reduction_factor, dropout = dropout)),
PreNorm(dim, FeedForward(dim, expansion_factor = ff_expansion_factor, dropout = dropout)),
ScalableSelfAttention(dim, heads = heads, dim_key = ssa_dim_key, dim_value = ssa_dim_value, reduction_factor = ssa_reduction_factor, dropout = dropout),
FeedForward(dim, expansion_factor = ff_expansion_factor, dropout = dropout),
PEG(dim) if is_first else None,
PreNorm(dim, FeedForward(dim, expansion_factor = ff_expansion_factor, dropout = dropout)),
PreNorm(dim, InteractiveWindowedSelfAttention(dim, heads = heads, dim_key = iwsa_dim_key, dim_value = iwsa_dim_value, window_size = iwsa_window_size, dropout = dropout))
FeedForward(dim, expansion_factor = ff_expansion_factor, dropout = dropout),
InteractiveWindowedSelfAttention(dim, heads = heads, dim_key = iwsa_dim_key, dim_value = iwsa_dim_value, window_size = iwsa_window_size, dropout = dropout)
]))
self.norm = ChanLayerNorm(dim) if norm_output else nn.Identity()

View File

@@ -25,15 +25,6 @@ class ChanLayerNorm(nn.Module):
mean = torch.mean(x, dim = 1, keepdim = True)
return (x - mean) / (var + self.eps).sqrt() * self.g + self.b
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = ChanLayerNorm(dim)
self.fn = fn
def forward(self, x):
return self.fn(self.norm(x))
class OverlappingPatchEmbed(nn.Module):
def __init__(self, dim_in, dim_out, stride = 2):
super().__init__()
@@ -59,6 +50,7 @@ class FeedForward(nn.Module):
super().__init__()
inner_dim = int(dim * mult)
self.net = nn.Sequential(
ChanLayerNorm(dim),
nn.Conv2d(dim, inner_dim, 1),
nn.GELU(),
nn.Dropout(dropout),
@@ -85,6 +77,8 @@ class DSSA(nn.Module):
self.window_size = window_size
inner_dim = dim_head * heads
self.norm = ChanLayerNorm(dim)
self.attend = nn.Sequential(
nn.Softmax(dim = -1),
nn.Dropout(dropout)
@@ -138,6 +132,8 @@ class DSSA(nn.Module):
assert (height % wsz) == 0 and (width % wsz) == 0, f'height {height} and width {width} must be divisible by window size {wsz}'
num_windows = (height // wsz) * (width // wsz)
x = self.norm(x)
# fold in windows for "depthwise" attention - not sure why it is named depthwise when it is just "windowed" attention
x = rearrange(x, 'b c (h w1) (w w2) -> (b h w) c (w1 w2)', w1 = wsz, w2 = wsz)
@@ -225,8 +221,8 @@ class Transformer(nn.Module):
for ind in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, DSSA(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
PreNorm(dim, FeedForward(dim, mult = ff_mult, dropout = dropout)),
DSSA(dim, heads = heads, dim_head = dim_head, dropout = dropout),
FeedForward(dim, mult = ff_mult, dropout = dropout),
]))
self.norm = ChanLayerNorm(dim) if norm_output else nn.Identity()

View File

@@ -18,8 +18,11 @@ class SimMIM(nn.Module):
self.encoder = encoder
num_patches, encoder_dim = encoder.pos_embedding.shape[-2:]
self.to_patch, self.patch_to_emb = encoder.to_patch_embedding[:2]
pixel_values_per_patch = self.patch_to_emb.weight.shape[-1]
self.to_patch = encoder.to_patch_embedding[0]
self.patch_to_emb = nn.Sequential(*encoder.to_patch_embedding[1:])
pixel_values_per_patch = encoder.to_patch_embedding[2].weight.shape[-1]
# simple linear head

View File

@@ -0,0 +1,176 @@
from collections import namedtuple
from packaging import version
import torch
import torch.nn.functional as F
from torch import nn
from einops import rearrange
from einops.layers.torch import Rearrange
# constants
Config = namedtuple('FlashAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient'])
# helpers
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def posemb_sincos_2d(patches, temperature = 10000, dtype = torch.float32):
_, h, w, dim, device, dtype = *patches.shape, patches.device, patches.dtype
y, x = torch.meshgrid(torch.arange(h, device = device), torch.arange(w, device = device), indexing = 'ij')
assert (dim % 4) == 0, 'feature dimension must be multiple of 4 for sincos emb'
omega = torch.arange(dim // 4, device = device) / (dim // 4 - 1)
omega = 1. / (temperature ** omega)
y = y.flatten()[:, None] * omega[None, :]
x = x.flatten()[:, None] * omega[None, :]
pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim = 1)
return pe.type(dtype)
# main class
class Attend(nn.Module):
def __init__(self, use_flash = False):
super().__init__()
self.use_flash = use_flash
assert not (use_flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above'
# determine efficient attention configs for cuda and cpu
self.cpu_config = Config(True, True, True)
self.cuda_config = None
if not torch.cuda.is_available() or not use_flash:
return
device_properties = torch.cuda.get_device_properties(torch.device('cuda'))
if device_properties.major == 8 and device_properties.minor == 0:
self.cuda_config = Config(True, False, False)
else:
self.cuda_config = Config(False, True, True)
def flash_attn(self, q, k, v):
config = self.cuda_config if q.is_cuda else self.cpu_config
# flash attention - https://arxiv.org/abs/2205.14135
with torch.backends.cuda.sdp_kernel(**config._asdict()):
out = F.scaled_dot_product_attention(q, k, v)
return out
def forward(self, q, k, v):
n, device, scale = q.shape[-2], q.device, q.shape[-1] ** -0.5
if self.use_flash:
return self.flash_attn(q, k, v)
# similarity
sim = einsum("b h i d, b j d -> b h i j", q, k) * scale
# attention
attn = sim.softmax(dim=-1)
# aggregate values
out = einsum("b h i j, b j d -> b h i d", attn, v)
return out
# classes
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, dim),
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, use_flash = True):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = Attend(use_flash = use_flash)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Linear(inner_dim, dim, bias = False)
def forward(self, x):
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
out = self.attend(q, k, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, use_flash):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim, heads = heads, dim_head = dim_head, use_flash = use_flash),
FeedForward(dim, mlp_dim)
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return x
class SimpleViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64, use_flash = True):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_height // patch_height) * (image_width // patch_width)
patch_dim = channels * patch_height * patch_width
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b h w (p1 p2 c)', p1 = patch_height, p2 = patch_width),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim),
)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, use_flash)
self.to_latent = nn.Identity()
self.linear_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def forward(self, img):
*_, h, w, dtype = *img.shape, img.dtype
x = self.to_patch_embedding(img)
pe = posemb_sincos_2d(x)
x = rearrange(x, 'b ... d -> b (...) d') + pe
x = self.transformer(x)
x = x.mean(dim = 1)
x = self.to_latent(x)
return self.linear_head(x)

View File

@@ -0,0 +1,171 @@
from packaging import version
from collections import namedtuple
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn import Module, ModuleList
from einops import rearrange
from einops.layers.torch import Rearrange
# constants
Config = namedtuple('FlashAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient'])
# helpers
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def posemb_sincos_3d(patches, temperature = 10000, dtype = torch.float32):
_, f, h, w, dim, device, dtype = *patches.shape, patches.device, patches.dtype
z, y, x = torch.meshgrid(
torch.arange(f, device = device),
torch.arange(h, device = device),
torch.arange(w, device = device),
indexing = 'ij')
fourier_dim = dim // 6
omega = torch.arange(fourier_dim, device = device) / (fourier_dim - 1)
omega = 1. / (temperature ** omega)
z = z.flatten()[:, None] * omega[None, :]
y = y.flatten()[:, None] * omega[None, :]
x = x.flatten()[:, None] * omega[None, :]
pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos(), z.sin(), z.cos()), dim = 1)
pe = F.pad(pe, (0, dim - (fourier_dim * 6))) # pad if feature dimension not cleanly divisible by 6
return pe.type(dtype)
# main class
class Attend(Module):
def __init__(self, use_flash = False, config: Config = Config(True, True, True)):
super().__init__()
self.config = config
self.use_flash = use_flash
assert not (use_flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above'
def flash_attn(self, q, k, v):
# flash attention - https://arxiv.org/abs/2205.14135
with torch.backends.cuda.sdp_kernel(**self.config._asdict()):
out = F.scaled_dot_product_attention(q, k, v)
return out
def forward(self, q, k, v):
n, device, scale = q.shape[-2], q.device, q.shape[-1] ** -0.5
if self.use_flash:
return self.flash_attn(q, k, v)
# similarity
sim = einsum("b h i d, b j d -> b h i j", q, k) * scale
# attention
attn = sim.softmax(dim=-1)
# aggregate values
out = einsum("b h i j, b j d -> b h i d", attn, v)
return out
# classes
class FeedForward(Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, dim),
)
def forward(self, x):
return self.net(x)
class Attention(Module):
def __init__(self, dim, heads = 8, dim_head = 64, use_flash = True):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = Attend(use_flash = use_flash)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Linear(inner_dim, dim, bias = False)
def forward(self, x):
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
out = self.attend(q, k, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, use_flash):
super().__init__()
self.layers = ModuleList([])
for _ in range(depth):
self.layers.append(ModuleList([
Attention(dim, heads = heads, dim_head = dim_head, use_flash = use_flash),
FeedForward(dim, mlp_dim)
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return x
class SimpleViT(Module):
def __init__(self, *, image_size, image_patch_size, frames, frame_patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64, use_flash_attn = True):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(image_patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
assert frames % frame_patch_size == 0, 'Frames must be divisible by the frame patch size'
num_patches = (image_height // patch_height) * (image_width // patch_width) * (frames // frame_patch_size)
patch_dim = channels * patch_height * patch_width * frame_patch_size
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (f pf) (h p1) (w p2) -> b f h w (p1 p2 pf c)', p1 = patch_height, p2 = patch_width, pf = frame_patch_size),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim),
)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, use_flash_attn)
self.to_latent = nn.Identity()
self.linear_head = nn.Linear(dim, num_classes)
def forward(self, video):
*_, h, w, dtype = *video.shape, video.dtype
x = self.to_patch_embedding(video)
pe = posemb_sincos_3d(x)
x = rearrange(x, 'b ... d -> b (...) d') + pe
x = self.transformer(x)
x = x.mean(dim = 1)
x = self.to_latent(x)
return self.linear_head(x)

176
vit_pytorch/simple_uvit.py Normal file
View File

@@ -0,0 +1,176 @@
import torch
from torch import nn
from torch.nn import Module, ModuleList
from einops import rearrange, repeat, pack, unpack
from einops.layers.torch import Rearrange
# helpers
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def exists(v):
return v is not None
def divisible_by(num, den):
return (num % den) == 0
def posemb_sincos_2d(h, w, dim, temperature: int = 10000, dtype = torch.float32):
y, x = torch.meshgrid(torch.arange(h), torch.arange(w), indexing="ij")
assert divisible_by(dim, 4), "feature dimension must be multiple of 4 for sincos emb"
omega = torch.arange(dim // 4) / (dim // 4 - 1)
omega = temperature ** -omega
y = y.flatten()[:, None] * omega[None, :]
x = x.flatten()[:, None] * omega[None, :]
pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim=1)
return pe.type(dtype)
# classes
def FeedForward(dim, hidden_dim):
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, dim),
)
class Attention(Module):
def __init__(self, dim, heads = 8, dim_head = 64):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Linear(inner_dim, dim, bias = False)
def forward(self, x):
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim):
super().__init__()
self.depth = depth
self.norm = nn.LayerNorm(dim)
self.layers = ModuleList([])
for layer in range(1, depth + 1):
latter_half = layer >= (depth / 2 + 1)
self.layers.append(nn.ModuleList([
nn.Linear(dim * 2, dim) if latter_half else None,
Attention(dim, heads = heads, dim_head = dim_head),
FeedForward(dim, mlp_dim)
]))
def forward(self, x):
skips = []
for ind, (combine_skip, attn, ff) in enumerate(self.layers):
layer = ind + 1
first_half = layer <= (self.depth / 2)
if first_half:
skips.append(x)
if exists(combine_skip):
skip = skips.pop()
skip_and_x = torch.cat((skip, x), dim = -1)
x = combine_skip(skip_and_x)
x = attn(x) + x
x = ff(x) + x
assert len(skips) == 0
return self.norm(x)
class SimpleUViT(Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, num_register_tokens = 4, channels = 3, dim_head = 64):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
assert divisible_by(image_height, patch_height) and divisible_by(image_width, patch_width), 'Image dimensions must be divisible by the patch size.'
patch_dim = channels * patch_height * patch_width
self.to_patch_embedding = nn.Sequential(
Rearrange("b c (h p1) (w p2) -> b (h w) (p1 p2 c)", p1 = patch_height, p2 = patch_width),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim),
)
pos_embedding = posemb_sincos_2d(
h = image_height // patch_height,
w = image_width // patch_width,
dim = dim
)
self.register_buffer('pos_embedding', pos_embedding, persistent = False)
self.register_tokens = nn.Parameter(torch.randn(num_register_tokens, dim))
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim)
self.pool = "mean"
self.to_latent = nn.Identity()
self.linear_head = nn.Linear(dim, num_classes)
def forward(self, img):
batch, device = img.shape[0], img.device
x = self.to_patch_embedding(img)
x = x + self.pos_embedding.type(x.dtype)
r = repeat(self.register_tokens, 'n d -> b n d', b = batch)
x, ps = pack([x, r], 'b * d')
x = self.transformer(x)
x, _ = unpack(x, ps, 'b * d')
x = x.mean(dim = 1)
x = self.to_latent(x)
return self.linear_head(x)
# quick test on odd number of layers
if __name__ == '__main__':
v = SimpleUViT(
image_size = 256,
patch_size = 32,
num_classes = 1000,
dim = 1024,
depth = 7,
heads = 16,
mlp_dim = 2048
).cuda()
img = torch.randn(2, 3, 256, 256).cuda()
preds = v(img)
assert preds.shape == (2, 1000)

120
vit_pytorch/simple_vit.py Normal file
View File

@@ -0,0 +1,120 @@
import torch
from torch import nn
from einops import rearrange
from einops.layers.torch import Rearrange
# helpers
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def posemb_sincos_2d(h, w, dim, temperature: int = 10000, dtype = torch.float32):
y, x = torch.meshgrid(torch.arange(h), torch.arange(w), indexing="ij")
assert (dim % 4) == 0, "feature dimension must be multiple of 4 for sincos emb"
omega = torch.arange(dim // 4) / (dim // 4 - 1)
omega = 1.0 / (temperature ** omega)
y = y.flatten()[:, None] * omega[None, :]
x = x.flatten()[:, None] * omega[None, :]
pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim=1)
return pe.type(dtype)
# classes
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, dim),
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Linear(inner_dim, dim, bias = False)
def forward(self, x):
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim, heads = heads, dim_head = dim_head),
FeedForward(dim, mlp_dim)
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return self.norm(x)
class SimpleViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
patch_dim = channels * patch_height * patch_width
self.to_patch_embedding = nn.Sequential(
Rearrange("b c (h p1) (w p2) -> b (h w) (p1 p2 c)", p1 = patch_height, p2 = patch_width),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim),
)
self.pos_embedding = posemb_sincos_2d(
h = image_height // patch_height,
w = image_width // patch_width,
dim = dim,
)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim)
self.pool = "mean"
self.to_latent = nn.Identity()
self.linear_head = nn.Linear(dim, num_classes)
def forward(self, img):
device = img.device
x = self.to_patch_embedding(img)
x += self.pos_embedding.to(device, dtype=x.dtype)
x = self.transformer(x)
x = x.mean(dim = 1)
x = self.to_latent(x)
return self.linear_head(x)

View File

@@ -0,0 +1,125 @@
import torch
from torch import nn
from einops import rearrange
from einops.layers.torch import Rearrange
# helpers
def posemb_sincos_1d(patches, temperature = 10000, dtype = torch.float32):
_, n, dim, device, dtype = *patches.shape, patches.device, patches.dtype
n = torch.arange(n, device = device)
assert (dim % 2) == 0, 'feature dimension must be multiple of 2 for sincos emb'
omega = torch.arange(dim // 2, device = device) / (dim // 2 - 1)
omega = 1. / (temperature ** omega)
n = n.flatten()[:, None] * omega[None, :]
pe = torch.cat((n.sin(), n.cos()), dim = 1)
return pe.type(dtype)
# classes
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, dim),
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Linear(inner_dim, dim, bias = False)
def forward(self, x):
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim, heads = heads, dim_head = dim_head),
FeedForward(dim, mlp_dim)
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return self.norm(x)
class SimpleViT(nn.Module):
def __init__(self, *, seq_len, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64):
super().__init__()
assert seq_len % patch_size == 0
num_patches = seq_len // patch_size
patch_dim = channels * patch_size
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (n p) -> b n (p c)', p = patch_size),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim),
)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim)
self.to_latent = nn.Identity()
self.linear_head = nn.Linear(dim, num_classes)
def forward(self, series):
*_, n, dtype = *series.shape, series.dtype
x = self.to_patch_embedding(series)
pe = posemb_sincos_1d(x)
x = rearrange(x, 'b ... d -> b (...) d') + pe
x = self.transformer(x)
x = x.mean(dim = 1)
x = self.to_latent(x)
return self.linear_head(x)
if __name__ == '__main__':
v = SimpleViT(
seq_len = 256,
patch_size = 16,
num_classes = 1000,
dim = 1024,
depth = 6,
heads = 8,
mlp_dim = 2048
)
time_series = torch.randn(4, 3, 256)
logits = v(time_series) # (4, 1000)

View File

@@ -0,0 +1,128 @@
import torch
import torch.nn.functional as F
from torch import nn
from einops import rearrange
from einops.layers.torch import Rearrange
# helpers
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def posemb_sincos_3d(patches, temperature = 10000, dtype = torch.float32):
_, f, h, w, dim, device, dtype = *patches.shape, patches.device, patches.dtype
z, y, x = torch.meshgrid(
torch.arange(f, device = device),
torch.arange(h, device = device),
torch.arange(w, device = device),
indexing = 'ij')
fourier_dim = dim // 6
omega = torch.arange(fourier_dim, device = device) / (fourier_dim - 1)
omega = 1. / (temperature ** omega)
z = z.flatten()[:, None] * omega[None, :]
y = y.flatten()[:, None] * omega[None, :]
x = x.flatten()[:, None] * omega[None, :]
pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos(), z.sin(), z.cos()), dim = 1)
pe = F.pad(pe, (0, dim - (fourier_dim * 6))) # pad if feature dimension not cleanly divisible by 6
return pe.type(dtype)
# classes
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, dim),
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Linear(inner_dim, dim, bias = False)
def forward(self, x):
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim, heads = heads, dim_head = dim_head),
FeedForward(dim, mlp_dim)
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return self.norm(x)
class SimpleViT(nn.Module):
def __init__(self, *, image_size, image_patch_size, frames, frame_patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(image_patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
assert frames % frame_patch_size == 0, 'Frames must be divisible by the frame patch size'
num_patches = (image_height // patch_height) * (image_width // patch_width) * (frames // frame_patch_size)
patch_dim = channels * patch_height * patch_width * frame_patch_size
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (f pf) (h p1) (w p2) -> b f h w (p1 p2 pf c)', p1 = patch_height, p2 = patch_width, pf = frame_patch_size),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim),
)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim)
self.to_latent = nn.Identity()
self.linear_head = nn.Linear(dim, num_classes)
def forward(self, video):
*_, h, w, dtype = *video.shape, video.dtype
x = self.to_patch_embedding(video)
pe = posemb_sincos_3d(x)
x = rearrange(x, 'b ... d -> b (...) d') + pe
x = self.transformer(x)
x = x.mean(dim = 1)
x = self.to_latent(x)
return self.linear_head(x)

View File

@@ -0,0 +1,162 @@
import torch
from torch.fft import fft2
from torch import nn
from einops import rearrange, reduce, pack, unpack
from einops.layers.torch import Rearrange
# helpers
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def posemb_sincos_2d(h, w, dim, temperature: int = 10000, dtype = torch.float32):
y, x = torch.meshgrid(torch.arange(h), torch.arange(w), indexing="ij")
assert (dim % 4) == 0, "feature dimension must be multiple of 4 for sincos emb"
omega = torch.arange(dim // 4) / (dim // 4 - 1)
omega = 1.0 / (temperature ** omega)
y = y.flatten()[:, None] * omega[None, :]
x = x.flatten()[:, None] * omega[None, :]
pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim=1)
return pe.type(dtype)
# classes
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, dim),
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Linear(inner_dim, dim, bias = False)
def forward(self, x):
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim, heads = heads, dim_head = dim_head),
FeedForward(dim, mlp_dim)
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return self.norm(x)
class SimpleViT(nn.Module):
def __init__(self, *, image_size, patch_size, freq_patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
freq_patch_height, freq_patch_width = pair(freq_patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
assert image_height % freq_patch_height == 0 and image_width % freq_patch_width == 0, 'Image dimensions must be divisible by the freq patch size.'
patch_dim = channels * patch_height * patch_width
freq_patch_dim = channels * 2 * freq_patch_height * freq_patch_width
self.to_patch_embedding = nn.Sequential(
Rearrange("b c (h p1) (w p2) -> b (h w) (p1 p2 c)", p1 = patch_height, p2 = patch_width),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim),
)
self.to_freq_embedding = nn.Sequential(
Rearrange("b c (h p1) (w p2) ri -> b (h w) (p1 p2 ri c)", p1 = freq_patch_height, p2 = freq_patch_width),
nn.LayerNorm(freq_patch_dim),
nn.Linear(freq_patch_dim, dim),
nn.LayerNorm(dim)
)
self.pos_embedding = posemb_sincos_2d(
h = image_height // patch_height,
w = image_width // patch_width,
dim = dim,
)
self.freq_pos_embedding = posemb_sincos_2d(
h = image_height // freq_patch_height,
w = image_width // freq_patch_width,
dim = dim
)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim)
self.pool = "mean"
self.to_latent = nn.Identity()
self.linear_head = nn.Linear(dim, num_classes)
def forward(self, img):
device, dtype = img.device, img.dtype
x = self.to_patch_embedding(img)
freqs = torch.view_as_real(fft2(img))
f = self.to_freq_embedding(freqs)
x += self.pos_embedding.to(device, dtype = dtype)
f += self.freq_pos_embedding.to(device, dtype = dtype)
x, ps = pack((f, x), 'b * d')
x = self.transformer(x)
_, x = unpack(x, ps, 'b * d')
x = reduce(x, 'b n d -> b d', 'mean')
x = self.to_latent(x)
return self.linear_head(x)
if __name__ == '__main__':
vit = SimpleViT(
num_classes = 1000,
image_size = 256,
patch_size = 8,
freq_patch_size = 8,
dim = 1024,
depth = 1,
heads = 8,
mlp_dim = 2048,
)
images = torch.randn(8, 3, 256, 256)
logits = vit(images)

View File

@@ -0,0 +1,141 @@
import torch
from torch import nn
from einops import rearrange
from einops.layers.torch import Rearrange
# helpers
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def posemb_sincos_2d(patches, temperature = 10000, dtype = torch.float32):
_, h, w, dim, device, dtype = *patches.shape, patches.device, patches.dtype
y, x = torch.meshgrid(torch.arange(h, device = device), torch.arange(w, device = device), indexing = 'ij')
assert (dim % 4) == 0, 'feature dimension must be multiple of 4 for sincos emb'
omega = torch.arange(dim // 4, device = device) / (dim // 4 - 1)
omega = 1. / (temperature ** omega)
y = y.flatten()[:, None] * omega[None, :]
x = x.flatten()[:, None] * omega[None, :]
pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim = 1)
return pe.type(dtype)
# patch dropout
class PatchDropout(nn.Module):
def __init__(self, prob):
super().__init__()
assert 0 <= prob < 1.
self.prob = prob
def forward(self, x):
if not self.training or self.prob == 0.:
return x
b, n, _, device = *x.shape, x.device
batch_indices = torch.arange(b, device = device)
batch_indices = rearrange(batch_indices, '... -> ... 1')
num_patches_keep = max(1, int(n * (1 - self.prob)))
patch_indices_keep = torch.randn(b, n, device = device).topk(num_patches_keep, dim = -1).indices
return x[batch_indices, patch_indices_keep]
# classes
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, dim),
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Linear(inner_dim, dim, bias = False)
def forward(self, x):
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim, heads = heads, dim_head = dim_head),
FeedForward(dim, mlp_dim)
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return self.norm(x)
class SimpleViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64, patch_dropout = 0.5):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_height // patch_height) * (image_width // patch_width)
patch_dim = channels * patch_height * patch_width
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b h w (p1 p2 c)', p1 = patch_height, p2 = patch_width),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim)
)
self.patch_dropout = PatchDropout(patch_dropout)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim)
self.to_latent = nn.Identity()
self.linear_head = nn.Linear(dim, num_classes)
def forward(self, img):
*_, h, w, dtype = *img.shape, img.dtype
x = self.to_patch_embedding(img)
pe = posemb_sincos_2d(x)
x = rearrange(x, 'b ... d -> b (...) d') + pe
x = self.patch_dropout(x)
x = self.transformer(x)
x = x.mean(dim = 1)
x = self.to_latent(x)
return self.linear_head(x)

View File

@@ -0,0 +1,141 @@
import torch
from torch import nn
import torch.nn.functional as F
from einops import rearrange
from einops.layers.torch import Rearrange
# helpers
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def posemb_sincos_2d(h, w, dim, temperature: int = 10000, dtype = torch.float32):
y, x = torch.meshgrid(torch.arange(h), torch.arange(w), indexing="ij")
assert (dim % 4) == 0, "feature dimension must be multiple of 4 for sincos emb"
omega = torch.arange(dim // 4) / (dim // 4 - 1)
omega = 1.0 / (temperature ** omega)
y = y.flatten()[:, None] * omega[None, :]
x = x.flatten()[:, None] * omega[None, :]
pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim=1)
return pe.type(dtype)
# they use a query-key normalization that is equivalent to rms norm (no mean-centering, learned gamma), from vit 22B paper
# in latest tweet, seem to claim more stable training at higher learning rates
# unsure if this has taken off within Brain, or it has some hidden drawback
class RMSNorm(nn.Module):
def __init__(self, heads, dim):
super().__init__()
self.scale = dim ** 0.5
self.gamma = nn.Parameter(torch.ones(heads, 1, dim) / self.scale)
def forward(self, x):
normed = F.normalize(x, dim = -1)
return normed * self.scale * self.gamma
# classes
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, dim),
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.q_norm = RMSNorm(heads, dim_head)
self.k_norm = RMSNorm(heads, dim_head)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Linear(inner_dim, dim, bias = False)
def forward(self, x):
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
q = self.q_norm(q)
k = self.k_norm(k)
dots = torch.matmul(q, k.transpose(-1, -2))
attn = self.attend(dots)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim, heads = heads, dim_head = dim_head),
FeedForward(dim, mlp_dim)
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return self.norm(x)
class SimpleViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
patch_dim = channels * patch_height * patch_width
self.to_patch_embedding = nn.Sequential(
Rearrange("b c (h p1) (w p2) -> b (h w) (p1 p2 c)", p1 = patch_height, p2 = patch_width),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim),
)
self.pos_embedding = posemb_sincos_2d(
h = image_height // patch_height,
w = image_width // patch_width,
dim = dim,
)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim)
self.pool = "mean"
self.to_latent = nn.Identity()
self.linear_head = nn.LayerNorm(dim)
def forward(self, img):
device = img.device
x = self.to_patch_embedding(img)
x += self.pos_embedding.to(device, dtype=x.dtype)
x = self.transformer(x)
x = x.mean(dim = 1)
x = self.to_latent(x)
return self.linear_head(x)

View File

@@ -0,0 +1,134 @@
"""
Vision Transformers Need Registers
https://arxiv.org/abs/2309.16588
"""
import torch
from torch import nn
from einops import rearrange, repeat, pack, unpack
from einops.layers.torch import Rearrange
# helpers
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def posemb_sincos_2d(h, w, dim, temperature: int = 10000, dtype = torch.float32):
y, x = torch.meshgrid(torch.arange(h), torch.arange(w), indexing="ij")
assert (dim % 4) == 0, "feature dimension must be multiple of 4 for sincos emb"
omega = torch.arange(dim // 4) / (dim // 4 - 1)
omega = 1.0 / (temperature ** omega)
y = y.flatten()[:, None] * omega[None, :]
x = x.flatten()[:, None] * omega[None, :]
pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim=1)
return pe.type(dtype)
# classes
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, dim),
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Linear(inner_dim, dim, bias = False)
def forward(self, x):
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim, heads = heads, dim_head = dim_head),
FeedForward(dim, mlp_dim)
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return self.norm(x)
class SimpleViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, num_register_tokens = 4, channels = 3, dim_head = 64):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
patch_dim = channels * patch_height * patch_width
self.to_patch_embedding = nn.Sequential(
Rearrange("b c (h p1) (w p2) -> b (h w) (p1 p2 c)", p1 = patch_height, p2 = patch_width),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim),
)
self.register_tokens = nn.Parameter(torch.randn(num_register_tokens, dim))
self.pos_embedding = posemb_sincos_2d(
h = image_height // patch_height,
w = image_width // patch_width,
dim = dim,
)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim)
self.pool = "mean"
self.to_latent = nn.Identity()
self.linear_head = nn.Linear(dim, num_classes)
def forward(self, img):
batch, device = img.shape[0], img.device
x = self.to_patch_embedding(img)
x += self.pos_embedding.to(device, dtype=x.dtype)
r = repeat(self.register_tokens, 'n d -> b n d', b = batch)
x, ps = pack([x, r], 'b * d')
x = self.transformer(x)
x, _ = unpack(x, ps, 'b * d')
x = x.mean(dim = 1)
x = self.to_latent(x)
return self.linear_head(x)

View File

@@ -61,10 +61,7 @@ class T2TViT(nn.Module):
self.pool = pool
self.to_latent = nn.Identity()
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
self.mlp_head = nn.Linear(dim, num_classes)
def forward(self, img):
x = self.to_patch_embedding(img)

View File

@@ -42,20 +42,11 @@ class LayerNorm(nn.Module):
mean = torch.mean(x, dim = 1, keepdim = True)
return (x - mean) / (var + self.eps).sqrt() * self.g + self.b
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
x = self.norm(x)
return self.fn(x, **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, mult = 4, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
LayerNorm(dim),
nn.Conv2d(dim, dim * mult, 1),
nn.GELU(),
nn.Dropout(dropout),
@@ -71,7 +62,12 @@ class PatchEmbedding(nn.Module):
self.dim = dim
self.dim_out = dim_out
self.patch_size = patch_size
self.proj = nn.Conv2d(patch_size ** 2 * dim, dim_out, 1)
self.proj = nn.Sequential(
LayerNorm(patch_size ** 2 * dim),
nn.Conv2d(patch_size ** 2 * dim, dim_out, 1),
LayerNorm(dim_out)
)
def forward(self, fmap):
p = self.patch_size
@@ -94,6 +90,7 @@ class LocalAttention(nn.Module):
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = LayerNorm(dim)
self.to_q = nn.Conv2d(dim, inner_dim, 1, bias = False)
self.to_kv = nn.Conv2d(dim, inner_dim * 2, 1, bias = False)
@@ -103,6 +100,8 @@ class LocalAttention(nn.Module):
)
def forward(self, fmap):
fmap = self.norm(fmap)
shape, p = fmap.shape, self.patch_size
b, n, x, y, h = *shape, self.heads
x, y = map(lambda t: t // p, (x, y))
@@ -127,6 +126,8 @@ class GlobalAttention(nn.Module):
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = LayerNorm(dim)
self.to_q = nn.Conv2d(dim, inner_dim, 1, bias = False)
self.to_kv = nn.Conv2d(dim, inner_dim * 2, k, stride = k, bias = False)
@@ -138,6 +139,8 @@ class GlobalAttention(nn.Module):
)
def forward(self, x):
x = self.norm(x)
shape = x.shape
b, n, _, y, h = *shape, self.heads
q, k, v = (self.to_q(x), *self.to_kv(x).chunk(2, dim = 1))
@@ -159,10 +162,10 @@ class Transformer(nn.Module):
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Residual(PreNorm(dim, LocalAttention(dim, heads = heads, dim_head = dim_head, dropout = dropout, patch_size = local_patch_size))) if has_local else nn.Identity(),
Residual(PreNorm(dim, FeedForward(dim, mlp_mult, dropout = dropout))) if has_local else nn.Identity(),
Residual(PreNorm(dim, GlobalAttention(dim, heads = heads, dim_head = dim_head, dropout = dropout, k = global_k))),
Residual(PreNorm(dim, FeedForward(dim, mlp_mult, dropout = dropout)))
Residual(LocalAttention(dim, heads = heads, dim_head = dim_head, dropout = dropout, patch_size = local_patch_size)) if has_local else nn.Identity(),
Residual(FeedForward(dim, mlp_mult, dropout = dropout)) if has_local else nn.Identity(),
Residual(GlobalAttention(dim, heads = heads, dim_head = dim_head, dropout = dropout, k = global_k)),
Residual(FeedForward(dim, mlp_mult, dropout = dropout))
]))
def forward(self, x):
for local_attn, ff1, global_attn, ff2 in self.layers:

View File

@@ -11,24 +11,18 @@ def pair(t):
# classes
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
@@ -41,6 +35,8 @@ class Attention(nn.Module):
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
@@ -52,6 +48,8 @@ class Attention(nn.Module):
) if project_out else nn.Identity()
def forward(self, x):
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
@@ -67,17 +65,20 @@ class Attention(nn.Module):
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout),
FeedForward(dim, mlp_dim, dropout = dropout)
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return x
return self.norm(x)
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
@@ -93,7 +94,9 @@ class ViT(nn.Module):
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim),
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
@@ -105,16 +108,13 @@ class ViT(nn.Module):
self.pool = pool
self.to_latent = nn.Identity()
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
self.mlp_head = nn.Linear(dim, num_classes)
def forward(self, img):
x = self.to_patch_embedding(img)
b, n, _ = x.shape
cls_tokens = repeat(self.cls_token, '1 n d -> b n d', b = b)
cls_tokens = repeat(self.cls_token, '1 1 d -> b 1 d', b = b)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding[:, :(n + 1)]
x = self.dropout(x)

130
vit_pytorch/vit_1d.py Normal file
View File

@@ -0,0 +1,130 @@
import torch
from torch import nn
from einops import rearrange, repeat, pack, unpack
from einops.layers.torch import Rearrange
# classes
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
) if project_out else nn.Identity()
def forward(self, x):
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout),
FeedForward(dim, mlp_dim, dropout = dropout)
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return x
class ViT(nn.Module):
def __init__(self, *, seq_len, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
super().__init__()
assert (seq_len % patch_size) == 0
num_patches = seq_len // patch_size
patch_dim = channels * patch_size
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (n p) -> b n (p c)', p = patch_size),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim),
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.cls_token = nn.Parameter(torch.randn(dim))
self.dropout = nn.Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def forward(self, series):
x = self.to_patch_embedding(series)
b, n, _ = x.shape
cls_tokens = repeat(self.cls_token, 'd -> b d', b = b)
x, ps = pack([cls_tokens, x], 'b * d')
x += self.pos_embedding[:, :(n + 1)]
x = self.dropout(x)
x = self.transformer(x)
cls_tokens, _ = unpack(x, ps, 'b * d')
return self.mlp_head(cls_tokens)
if __name__ == '__main__':
v = ViT(
seq_len = 256,
patch_size = 16,
num_classes = 1000,
dim = 1024,
depth = 6,
heads = 8,
mlp_dim = 2048,
dropout = 0.1,
emb_dropout = 0.1
)
time_series = torch.randn(4, 3, 256)
logits = v(time_series) # (4, 1000)

126
vit_pytorch/vit_3d.py Normal file
View File

@@ -0,0 +1,126 @@
import torch
from torch import nn
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
# helpers
def pair(t):
return t if isinstance(t, tuple) else (t, t)
# classes
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
) if project_out else nn.Identity()
def forward(self, x):
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout),
FeedForward(dim, mlp_dim, dropout = dropout)
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return x
class ViT(nn.Module):
def __init__(self, *, image_size, image_patch_size, frames, frame_patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(image_patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
assert frames % frame_patch_size == 0, 'Frames must be divisible by frame patch size'
num_patches = (image_height // patch_height) * (image_width // patch_width) * (frames // frame_patch_size)
patch_dim = channels * patch_height * patch_width * frame_patch_size
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (f pf) (h p1) (w p2) -> b (f h w) (p1 p2 pf c)', p1 = patch_height, p2 = patch_width, pf = frame_patch_size),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim),
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
self.pool = pool
self.to_latent = nn.Identity()
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def forward(self, video):
x = self.to_patch_embedding(video)
b, n, _ = x.shape
cls_tokens = repeat(self.cls_token, '1 1 d -> b 1 d', b = b)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding[:, :(n + 1)]
x = self.dropout(x)
x = self.transformer(x)
x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]
x = self.to_latent(x)
return self.mlp_head(x)

View File

@@ -13,18 +13,11 @@ def pair(t):
# classes
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
@@ -41,6 +34,7 @@ class LSA(nn.Module):
self.heads = heads
self.temperature = nn.Parameter(torch.log(torch.tensor(dim_head ** -0.5)))
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
@@ -52,6 +46,7 @@ class LSA(nn.Module):
)
def forward(self, x):
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
@@ -74,8 +69,8 @@ class Transformer(nn.Module):
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, LSA(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
LSA(dim, heads = heads, dim_head = dim_head, dropout = dropout),
FeedForward(dim, mlp_dim, dropout = dropout)
]))
def forward(self, x):
for attn, ff in self.layers:

View File

@@ -0,0 +1,147 @@
import torch
from torch import nn
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
# helpers
def pair(t):
return t if isinstance(t, tuple) else (t, t)
# classes
class PatchDropout(nn.Module):
def __init__(self, prob):
super().__init__()
assert 0 <= prob < 1.
self.prob = prob
def forward(self, x):
if not self.training or self.prob == 0.:
return x
b, n, _, device = *x.shape, x.device
batch_indices = torch.arange(b, device = device)
batch_indices = rearrange(batch_indices, '... -> ... 1')
num_patches_keep = max(1, int(n * (1 - self.prob)))
patch_indices_keep = torch.randn(b, n, device = device).topk(num_patches_keep, dim = -1).indices
return x[batch_indices, patch_indices_keep]
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
) if project_out else nn.Identity()
def forward(self, x):
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout),
FeedForward(dim, mlp_dim, dropout = dropout)
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return x
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0., patch_dropout = 0.25):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_height // patch_height) * (image_width // patch_width)
patch_dim = channels * patch_height * patch_width
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
nn.Linear(patch_dim, dim),
)
self.pos_embedding = nn.Parameter(torch.randn(num_patches, dim))
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.patch_dropout = PatchDropout(patch_dropout)
self.dropout = nn.Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
self.pool = pool
self.to_latent = nn.Identity()
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def forward(self, img):
x = self.to_patch_embedding(img)
b, n, _ = x.shape
x += self.pos_embedding
x = self.patch_dropout(x)
cls_tokens = repeat(self.cls_token, '1 1 d -> b 1 d', b = b)
x = torch.cat((cls_tokens, x), dim=1)
x = self.dropout(x)
x = self.transformer(x)
x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]
x = self.to_latent(x)
return self.mlp_head(x)

View File

@@ -32,18 +32,11 @@ class PatchMerger(nn.Module):
# classes
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
@@ -62,6 +55,7 @@ class Attention(nn.Module):
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
@@ -73,6 +67,7 @@ class Attention(nn.Module):
) if project_out else nn.Identity()
def forward(self, x):
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
@@ -88,6 +83,7 @@ class Attention(nn.Module):
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0., patch_merge_layer = None, patch_merge_num_tokens = 8):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.layers = nn.ModuleList([])
self.patch_merge_layer_index = default(patch_merge_layer, depth // 2) - 1 # default to mid-way through transformer, as shown in paper
@@ -95,8 +91,8 @@ class Transformer(nn.Module):
for _ in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout),
FeedForward(dim, mlp_dim, dropout = dropout)
]))
def forward(self, x):
for index, (attn, ff) in enumerate(self.layers):
@@ -106,7 +102,7 @@ class Transformer(nn.Module):
if index == self.patch_merge_layer_index:
x = self.patch_merger(x)
return x
return self.norm(x)
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, patch_merge_layer = None, patch_merge_num_tokens = 8, channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.):
@@ -121,7 +117,9 @@ class ViT(nn.Module):
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim)
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
@@ -131,7 +129,6 @@ class ViT(nn.Module):
self.mlp_head = nn.Sequential(
Reduce('b n d -> b d', 'mean'),
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)

178
vit_pytorch/vivit.py Normal file
View File

@@ -0,0 +1,178 @@
import torch
from torch import nn
from einops import rearrange, repeat, reduce
from einops.layers.torch import Rearrange
# helpers
def exists(val):
return val is not None
def pair(t):
return t if isinstance(t, tuple) else (t, t)
# classes
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
) if project_out else nn.Identity()
def forward(self, x):
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout),
FeedForward(dim, mlp_dim, dropout = dropout)
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return self.norm(x)
class ViT(nn.Module):
def __init__(
self,
*,
image_size,
image_patch_size,
frames,
frame_patch_size,
num_classes,
dim,
spatial_depth,
temporal_depth,
heads,
mlp_dim,
pool = 'cls',
channels = 3,
dim_head = 64,
dropout = 0.,
emb_dropout = 0.
):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(image_patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
assert frames % frame_patch_size == 0, 'Frames must be divisible by frame patch size'
num_image_patches = (image_height // patch_height) * (image_width // patch_width)
num_frame_patches = (frames // frame_patch_size)
patch_dim = channels * patch_height * patch_width * frame_patch_size
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
self.global_average_pool = pool == 'mean'
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (f pf) (h p1) (w p2) -> b f (h w) (p1 p2 pf c)', p1 = patch_height, p2 = patch_width, pf = frame_patch_size),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim)
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_frame_patches, num_image_patches, dim))
self.dropout = nn.Dropout(emb_dropout)
self.spatial_cls_token = nn.Parameter(torch.randn(1, 1, dim)) if not self.global_average_pool else None
self.temporal_cls_token = nn.Parameter(torch.randn(1, 1, dim)) if not self.global_average_pool else None
self.spatial_transformer = Transformer(dim, spatial_depth, heads, dim_head, mlp_dim, dropout)
self.temporal_transformer = Transformer(dim, temporal_depth, heads, dim_head, mlp_dim, dropout)
self.pool = pool
self.to_latent = nn.Identity()
self.mlp_head = nn.Linear(dim, num_classes)
def forward(self, video):
x = self.to_patch_embedding(video)
b, f, n, _ = x.shape
x = x + self.pos_embedding[:, :f, :n]
if exists(self.spatial_cls_token):
spatial_cls_tokens = repeat(self.spatial_cls_token, '1 1 d -> b f 1 d', b = b, f = f)
x = torch.cat((spatial_cls_tokens, x), dim = 2)
x = self.dropout(x)
x = rearrange(x, 'b f n d -> (b f) n d')
# attend across space
x = self.spatial_transformer(x)
x = rearrange(x, '(b f) n d -> b f n d', b = b)
# excise out the spatial cls tokens or average pool for temporal attention
x = x[:, :, 0] if not self.global_average_pool else reduce(x, 'b f n d -> b f d', 'mean')
# append temporal CLS tokens
if exists(self.temporal_cls_token):
temporal_cls_tokens = repeat(self.temporal_cls_token, '1 1 d-> b 1 d', b = b)
x = torch.cat((temporal_cls_tokens, x), dim = 1)
# attend across time
x = self.temporal_transformer(x)
# excise out temporal cls token or average pool
x = x[:, 0] if not self.global_average_pool else reduce(x, 'b f d -> b d', 'mean')
x = self.to_latent(x)
return self.mlp_head(x)

283
vit_pytorch/xcit.py Normal file
View File

@@ -0,0 +1,283 @@
from random import randrange
import torch
from torch import nn, einsum
from torch.nn import Module, ModuleList
import torch.nn.functional as F
from einops import rearrange, repeat, pack, unpack
from einops.layers.torch import Rearrange
# helpers
def exists(val):
return val is not None
def pack_one(t, pattern):
return pack([t], pattern)
def unpack_one(t, ps, pattern):
return unpack(t, ps, pattern)[0]
def l2norm(t):
return F.normalize(t, dim = -1, p = 2)
def dropout_layers(layers, dropout):
if dropout == 0:
return layers
num_layers = len(layers)
to_drop = torch.zeros(num_layers).uniform_(0., 1.) < dropout
# make sure at least one layer makes it
if all(to_drop):
rand_index = randrange(num_layers)
to_drop[rand_index] = False
layers = [layer for (layer, drop) in zip(layers, to_drop) if not drop]
return layers
# classes
class LayerScale(Module):
def __init__(self, dim, fn, depth):
super().__init__()
if depth <= 18:
init_eps = 0.1
elif 18 > depth <= 24:
init_eps = 1e-5
else:
init_eps = 1e-6
self.fn = fn
self.scale = nn.Parameter(torch.full((dim,), init_eps))
def forward(self, x, **kwargs):
return self.fn(x, **kwargs) * self.scale
class FeedForward(Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias = False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x, context = None):
h = self.heads
x = self.norm(x)
context = x if not exists(context) else torch.cat((x, context), dim = 1)
qkv = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1))
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)
sim = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
attn = self.attend(sim)
attn = self.dropout(attn)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class XCAttention(Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.norm = nn.LayerNorm(dim)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.temperature = nn.Parameter(torch.ones(heads, 1, 1))
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
h = self.heads
x, ps = pack_one(x, 'b * d')
x = self.norm(x)
q, k, v = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h d n', h = h), (q, k, v))
q, k = map(l2norm, (q, k))
sim = einsum('b h i n, b h j n -> b h i j', q, k) * self.temperature.exp()
attn = self.attend(sim)
attn = self.dropout(attn)
out = einsum('b h i j, b h j n -> b h i n', attn, v)
out = rearrange(out, 'b h d n -> b n (h d)')
out = unpack_one(out, ps, 'b * d')
return self.to_out(out)
class LocalPatchInteraction(Module):
def __init__(self, dim, kernel_size = 3):
super().__init__()
assert (kernel_size % 2) == 1
padding = kernel_size // 2
self.net = nn.Sequential(
nn.LayerNorm(dim),
Rearrange('b h w c -> b c h w'),
nn.Conv2d(dim, dim, kernel_size, padding = padding, groups = dim),
nn.BatchNorm2d(dim),
nn.GELU(),
nn.Conv2d(dim, dim, kernel_size, padding = padding, groups = dim),
Rearrange('b c h w -> b h w c'),
)
def forward(self, x):
return self.net(x)
class Transformer(Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0., layer_dropout = 0.):
super().__init__()
self.layers = ModuleList([])
self.layer_dropout = layer_dropout
for ind in range(depth):
layer = ind + 1
self.layers.append(ModuleList([
LayerScale(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout), depth = layer),
LayerScale(dim, FeedForward(dim, mlp_dim, dropout = dropout), depth = layer)
]))
def forward(self, x, context = None):
layers = dropout_layers(self.layers, dropout = self.layer_dropout)
for attn, ff in layers:
x = attn(x, context = context) + x
x = ff(x) + x
return x
class XCATransformer(Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, local_patch_kernel_size = 3, dropout = 0., layer_dropout = 0.):
super().__init__()
self.layers = ModuleList([])
self.layer_dropout = layer_dropout
for ind in range(depth):
layer = ind + 1
self.layers.append(ModuleList([
LayerScale(dim, XCAttention(dim, heads = heads, dim_head = dim_head, dropout = dropout), depth = layer),
LayerScale(dim, LocalPatchInteraction(dim, local_patch_kernel_size), depth = layer),
LayerScale(dim, FeedForward(dim, mlp_dim, dropout = dropout), depth = layer)
]))
def forward(self, x):
layers = dropout_layers(self.layers, dropout = self.layer_dropout)
for cross_covariance_attn, local_patch_interaction, ff in layers:
x = cross_covariance_attn(x) + x
x = local_patch_interaction(x) + x
x = ff(x) + x
return x
class XCiT(Module):
def __init__(
self,
*,
image_size,
patch_size,
num_classes,
dim,
depth,
cls_depth,
heads,
mlp_dim,
dim_head = 64,
dropout = 0.,
emb_dropout = 0.,
local_patch_kernel_size = 3,
layer_dropout = 0.
):
super().__init__()
assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_size // patch_size) ** 2
patch_dim = 3 * patch_size ** 2
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b h w (p1 p2 c)', p1 = patch_size, p2 = patch_size),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim)
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches, dim))
self.cls_token = nn.Parameter(torch.randn(dim))
self.dropout = nn.Dropout(emb_dropout)
self.xcit_transformer = XCATransformer(dim, depth, heads, dim_head, mlp_dim, local_patch_kernel_size, dropout, layer_dropout)
self.final_norm = nn.LayerNorm(dim)
self.cls_transformer = Transformer(dim, cls_depth, heads, dim_head, mlp_dim, dropout, layer_dropout)
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def forward(self, img):
x = self.to_patch_embedding(img)
x, ps = pack_one(x, 'b * d')
b, n, _ = x.shape
x += self.pos_embedding[:, :n]
x = unpack_one(x, ps, 'b * d')
x = self.dropout(x)
x = self.xcit_transformer(x)
x = self.final_norm(x)
cls_tokens = repeat(self.cls_token, 'd -> b 1 d', b = b)
x = rearrange(x, 'b ... d -> b (...) d')
cls_tokens = self.cls_transformer(cls_tokens, context = x)
return self.mlp_head(cls_tokens[:, 0])