Compare commits

...

3 Commits

5 changed files with 215 additions and 6 deletions

View File

@@ -6,6 +6,7 @@
- [Install](#install)
- [Usage](#usage)
- [Parameters](#parameters)
- [Simple ViT](#simple-vit)
- [Distillation](#distillation)
- [Deep ViT](#deep-vit)
- [CaiT](#cait)
@@ -106,6 +107,33 @@ Embedding dropout rate.
- `pool`: string, either `cls` token pooling or `mean` pooling
## Simple ViT
<a href="https://arxiv.org/abs/2205.01580">An update</a> from some of the same authors of the original paper proposes simplifications to `ViT` that allows it to train faster and better.
Among these simplifications include 2d sinusoidal positional embedding, global average pooling (no CLS token), no dropout, batch sizes of 1024 rather than 4096, and use of RandAugment and MixUp augmentations. They also show that a simple linear at the end is not significantly worse than the original MLP head
You can use it by importing the `SimpleViT` as shown below
```python
import torch
from vit_pytorch import SimpleViT
v = SimpleViT(
image_size = 256,
patch_size = 32,
num_classes = 1000,
dim = 1024,
depth = 6,
heads = 16,
mlp_dim = 2048
)
img = torch.randn(1, 3, 256, 256)
preds = v(img) # (1, 1000)
```
## Distillation
<img src="./images/distill.png" width="300px"></img>
@@ -1227,6 +1255,47 @@ logits, embeddings = v(img)
embeddings # (1, 65, 1024) - (batch x patches x model dim)
```
Or say for `CrossViT`, which has a multi-scale encoder that outputs two sets of embeddings for 'large' and 'small' scales
```python
import torch
from vit_pytorch.cross_vit import CrossViT
v = CrossViT(
image_size = 256,
num_classes = 1000,
depth = 4,
sm_dim = 192,
sm_patch_size = 16,
sm_enc_depth = 2,
sm_enc_heads = 8,
sm_enc_mlp_dim = 2048,
lg_dim = 384,
lg_patch_size = 64,
lg_enc_depth = 3,
lg_enc_heads = 8,
lg_enc_mlp_dim = 2048,
cross_attn_depth = 2,
cross_attn_heads = 8,
dropout = 0.1,
emb_dropout = 0.1
)
# wrap the CrossViT
from vit_pytorch.extractor import Extractor
v = Extractor(v, layer_name = 'multi_scale_encoder') # take embedding coming from the output of multi-scale-encoder
# forward pass now returns predictions and the attention maps
img = torch.randn(1, 3, 256, 256)
logits, embeddings = v(img)
# there is one extra token due to the CLS token
embeddings # ((1, 257, 192), (1, 17, 384)) - (batch x patches x dimension) <- large and small scales respectively
```
## Research Ideas
### Efficient Attention
@@ -1669,6 +1738,16 @@ Coming from computer vision and new to transformers? Here are some resources tha
}
```
```bibtex
@misc{Beyer2022BetterPlainViT
title = {Better plain ViT baselines for ImageNet-1k},
author = {Beyer, Lucas and Zhai, Xiaohua and Kolesnikov, Alexander},
publisher = {arXiv},
year = {2022}
}
```
```bibtex
@misc{vaswani2017attention,
title = {Attention Is All You Need},

View File

@@ -3,9 +3,10 @@ from setuptools import setup, find_packages
setup(
name = 'vit-pytorch',
packages = find_packages(exclude=['examples']),
version = '0.34.1',
version = '0.35.4',
license='MIT',
description = 'Vision Transformer (ViT) - Pytorch',
long_description_content_type = 'text/markdown',
author = 'Phil Wang',
author_email = 'lucidrains@gmail.com',
url = 'https://github.com/lucidrains/vit-pytorch',

View File

@@ -1,3 +1,5 @@
from vit_pytorch.vit import ViT
from vit_pytorch.simple_vit import SimpleViT
from vit_pytorch.mae import MAE
from vit_pytorch.dino import Dino

View File

@@ -4,11 +4,17 @@ from torch import nn
def exists(val):
return val is not None
def apply_tuple_or_single(fn, val):
if isinstance(val, tuple):
return tuple(map(fn, val))
return fn(val)
class Extractor(nn.Module):
def __init__(
self,
vit,
device = None,
layer = None,
layer_name = 'transformer',
layer_save_input = False,
return_embeddings_only = False
@@ -23,17 +29,22 @@ class Extractor(nn.Module):
self.ejected = False
self.device = device
self.layer = layer
self.layer_name = layer_name
self.layer_save_input = layer_save_input # whether to save input or output of layer
self.return_embeddings_only = return_embeddings_only
def _hook(self, _, inputs, output):
tensor_to_save = inputs if self.layer_save_input else output
self.latents = tensor_to_save.clone().detach()
layer_output = inputs if self.layer_save_input else output
self.latents = apply_tuple_or_single(lambda t: t.clone().detach(), layer_output)
def _register_hook(self):
assert hasattr(self.vit, self.layer_name), 'layer whose output to take as embedding not found in vision transformer'
layer = getattr(self.vit, self.layer_name)
if not exists(self.layer):
assert hasattr(self.vit, self.layer_name), 'layer whose output to take as embedding not found in vision transformer'
layer = getattr(self.vit, self.layer_name)
else:
layer = self.layer
handle = layer.register_forward_hook(self._hook)
self.hooks.append(handle)
self.hook_registered = True
@@ -62,7 +73,7 @@ class Extractor(nn.Module):
pred = self.vit(img)
target_device = self.device if exists(self.device) else img.device
latents = self.latents.to(target_device)
latents = apply_tuple_or_single(lambda t: t.to(target_device), self.latents)
if return_embeddings_only or self.return_embeddings_only:
return latents

116
vit_pytorch/simple_vit.py Normal file
View File

@@ -0,0 +1,116 @@
import torch
from torch import nn
from einops import rearrange
from einops.layers.torch import Rearrange
# helpers
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def posemb_sincos_2d(patches, temperature = 10000, dtype = torch.float32):
_, h, w, dim, device, dtype = *patches.shape, patches.device, patches.dtype
y, x = torch.meshgrid(torch.arange(h, device = device), torch.arange(w, device = device), indexing = 'ij')
assert (dim % 4) == 0, 'feature dimension must be multiple of 4 for sincos emb'
omega = torch.arange(dim // 4, device = device) / (dim // 4 - 1)
omega = 1. / (temperature ** omega)
y = y.flatten()[:, None] * omega[None, :]
x = x.flatten()[:, None] * omega[None, :]
pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim = 1)
return pe.type(dtype)
# classes
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, dim),
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Linear(inner_dim, dim, bias = False)
def forward(self, x):
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim, heads = heads, dim_head = dim_head),
FeedForward(dim, mlp_dim)
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return x
class SimpleViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_height // patch_height) * (image_width // patch_width)
patch_dim = channels * patch_height * patch_width
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b h w (p1 p2 c)', p1 = patch_height, p2 = patch_width),
nn.Linear(patch_dim, dim),
)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim)
self.to_latent = nn.Identity()
self.linear_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def forward(self, img):
*_, h, w, dtype = *img.shape, img.dtype
x = self.to_patch_embedding(img)
pe = posemb_sincos_2d(x)
x = rearrange(x, 'b ... d -> b (...) d') + pe
x = self.transformer(x)
x = x.mean(dim = 1)
x = self.to_latent(x)
return self.linear_head(x)