mirror of
https://github.com/lucidrains/vit-pytorch.git
synced 2025-12-30 08:02:29 +00:00
Compare commits
8 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
258dd8c7c6 | ||
|
|
4218556acd | ||
|
|
f621c2b041 | ||
|
|
5699ed7d13 | ||
|
|
46dcaf23d8 | ||
|
|
bdaf2d1491 | ||
|
|
500e23105a | ||
|
|
89e1996c8b |
60
README.md
60
README.md
@@ -27,6 +27,7 @@
|
||||
- [Masked Autoencoder](#masked-autoencoder)
|
||||
- [Simple Masked Image Modeling](#simple-masked-image-modeling)
|
||||
- [Masked Patch Prediction](#masked-patch-prediction)
|
||||
- [Masked Position Prediction](#masked-position-prediction)
|
||||
- [Adaptive Token Sampling](#adaptive-token-sampling)
|
||||
- [Patch Merger](#patch-merger)
|
||||
- [Vision Transformer for Small Datasets](#vision-transformer-for-small-datasets)
|
||||
@@ -303,7 +304,7 @@ cct = CCT(
|
||||
pooling_padding = 1,
|
||||
num_layers = 14,
|
||||
num_heads = 6,
|
||||
mlp_radio = 3.,
|
||||
mlp_ratio = 3.,
|
||||
num_classes = 1000,
|
||||
positional_embedding = 'learnable', # ['sine', 'learnable', 'none']
|
||||
)
|
||||
@@ -844,6 +845,39 @@ for _ in range(100):
|
||||
torch.save(model.state_dict(), './pretrained-net.pt')
|
||||
```
|
||||
|
||||
## Masked Position Prediction
|
||||
|
||||
<img src="./images/mp3.png" width="400px"></img>
|
||||
|
||||
New <a href="https://arxiv.org/abs/2207.07611">paper</a> that introduces masked position prediction pre-training criteria. This strategy is more efficient than the Masked Autoencoder strategy and has comparable performance.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from vit_pytorch.mp3 import MP3
|
||||
|
||||
model = MP3(
|
||||
image_size=256,
|
||||
patch_size=8,
|
||||
masking_ratio=0.75
|
||||
dim=1024,
|
||||
depth=6,
|
||||
heads=8,
|
||||
mlp_dim=2048,
|
||||
dropout=0.1,
|
||||
)
|
||||
|
||||
images = torch.randn(8, 3, 256, 256)
|
||||
|
||||
loss = model(images)
|
||||
loss.backward()
|
||||
|
||||
# that's all!
|
||||
# do the above in a for loop many times with a lot of images and your vision transformer will learn
|
||||
|
||||
# save your improved vision transformer
|
||||
torch.save(v.state_dict(), './trained-vit.pt')
|
||||
```
|
||||
|
||||
## Adaptive Token Sampling
|
||||
|
||||
<img src="./images/ats.png" width="400px"></img>
|
||||
@@ -1043,7 +1077,7 @@ cct = CCT(
|
||||
pooling_padding = 1,
|
||||
num_layers = 14,
|
||||
num_heads = 6,
|
||||
mlp_radio = 3.,
|
||||
mlp_ratio = 3.,
|
||||
num_classes = 1000,
|
||||
positional_embedding = 'learnable'
|
||||
)
|
||||
@@ -1873,6 +1907,28 @@ Coming from computer vision and new to transformers? Here are some resources tha
|
||||
}
|
||||
```
|
||||
|
||||
```bibtex
|
||||
@article{Liu2022PatchDropoutEV,
|
||||
title = {PatchDropout: Economizing Vision Transformers Using Patch Dropout},
|
||||
author = {Yue Liu and Christos Matsoukas and Fredrik Strand and Hossein Azizpour and Kevin Smith},
|
||||
journal = {ArXiv},
|
||||
year = {2022},
|
||||
volume = {abs/2208.07220}
|
||||
}
|
||||
```
|
||||
|
||||
```bibtex
|
||||
@misc{https://doi.org/10.48550/arxiv.2302.01327,
|
||||
doi = {10.48550/ARXIV.2302.01327},
|
||||
url = {https://arxiv.org/abs/2302.01327},
|
||||
author = {Kumar, Manoj and Dehghani, Mostafa and Houlsby, Neil},
|
||||
title = {Dual PatchNorm},
|
||||
publisher = {arXiv},
|
||||
year = {2023},
|
||||
copyright = {Creative Commons Attribution 4.0 International}
|
||||
}
|
||||
```
|
||||
|
||||
```bibtex
|
||||
@misc{vaswani2017attention,
|
||||
title = {Attention Is All You Need},
|
||||
|
||||
BIN
images/mp3.png
Normal file
BIN
images/mp3.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 518 KiB |
2
setup.py
2
setup.py
@@ -3,7 +3,7 @@ from setuptools import setup, find_packages
|
||||
setup(
|
||||
name = 'vit-pytorch',
|
||||
packages = find_packages(exclude=['examples']),
|
||||
version = '0.39.1',
|
||||
version = '1.1.0',
|
||||
license='MIT',
|
||||
description = 'Vision Transformer (ViT) - Pytorch',
|
||||
long_description_content_type = 'text/markdown',
|
||||
|
||||
@@ -230,7 +230,9 @@ class ViT(nn.Module):
|
||||
|
||||
self.to_patch_embedding = nn.Sequential(
|
||||
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
|
||||
nn.LayerNorm(patch_dim),
|
||||
nn.Linear(patch_dim, dim),
|
||||
nn.LayerNorm(dim)
|
||||
)
|
||||
|
||||
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
|
||||
|
||||
@@ -150,7 +150,9 @@ class CaiT(nn.Module):
|
||||
|
||||
self.to_patch_embedding = nn.Sequential(
|
||||
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size),
|
||||
nn.LayerNorm(patch_dim),
|
||||
nn.Linear(patch_dim, dim),
|
||||
nn.LayerNorm(dim)
|
||||
)
|
||||
|
||||
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches, dim))
|
||||
|
||||
@@ -186,7 +186,9 @@ class ImageEmbedder(nn.Module):
|
||||
|
||||
self.to_patch_embedding = nn.Sequential(
|
||||
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size),
|
||||
nn.LayerNorm(patch_dim),
|
||||
nn.Linear(patch_dim, dim),
|
||||
nn.LayerNorm(dim)
|
||||
)
|
||||
|
||||
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
|
||||
|
||||
@@ -105,7 +105,9 @@ class DeepViT(nn.Module):
|
||||
|
||||
self.to_patch_embedding = nn.Sequential(
|
||||
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size),
|
||||
nn.LayerNorm(patch_dim),
|
||||
nn.Linear(patch_dim, dim),
|
||||
nn.LayerNorm(dim)
|
||||
)
|
||||
|
||||
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
|
||||
|
||||
@@ -17,7 +17,9 @@ class ViT(nn.Module):
|
||||
|
||||
self.to_patch_embedding = nn.Sequential(
|
||||
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size),
|
||||
nn.LayerNorm(patch_dim),
|
||||
nn.Linear(patch_dim, dim),
|
||||
nn.LayerNorm(dim)
|
||||
)
|
||||
|
||||
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
|
||||
|
||||
@@ -118,7 +118,9 @@ class ViT(nn.Module):
|
||||
|
||||
self.to_patch_embedding = nn.Sequential(
|
||||
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
|
||||
nn.LayerNorm(patch_dim),
|
||||
nn.Linear(patch_dim, dim),
|
||||
nn.LayerNorm(dim)
|
||||
)
|
||||
|
||||
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
|
||||
|
||||
@@ -126,7 +126,9 @@ class LocalViT(nn.Module):
|
||||
|
||||
self.to_patch_embedding = nn.Sequential(
|
||||
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size),
|
||||
nn.LayerNorm(patch_dim),
|
||||
nn.Linear(patch_dim, dim),
|
||||
nn.LayerNorm(dim),
|
||||
)
|
||||
|
||||
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
|
||||
|
||||
@@ -24,8 +24,11 @@ class MAE(nn.Module):
|
||||
|
||||
self.encoder = encoder
|
||||
num_patches, encoder_dim = encoder.pos_embedding.shape[-2:]
|
||||
self.to_patch, self.patch_to_emb = encoder.to_patch_embedding[:2]
|
||||
pixel_values_per_patch = self.patch_to_emb.weight.shape[-1]
|
||||
|
||||
self.to_patch = encoder.to_patch_embedding[0]
|
||||
self.patch_to_emb = nn.Sequential(*encoder.to_patch_embedding[1:])
|
||||
|
||||
pixel_values_per_patch = encoder.to_patch_embedding[2].weight.shape[-1]
|
||||
|
||||
# decoder parameters
|
||||
self.decoder_dim = decoder_dim
|
||||
|
||||
137
vit_pytorch/mp3.py
Normal file
137
vit_pytorch/mp3.py
Normal file
@@ -0,0 +1,137 @@
|
||||
import torch
|
||||
from torch import nn, einsum
|
||||
import torch.nn.functional as F
|
||||
|
||||
from einops import rearrange, repeat
|
||||
from einops.layers.torch import Rearrange
|
||||
|
||||
# helpers
|
||||
|
||||
def pair(t):
|
||||
return t if isinstance(t, tuple) else (t, t)
|
||||
|
||||
# pre-layernorm
|
||||
|
||||
class PreNorm(nn.Module):
|
||||
def __init__(self, dim, fn):
|
||||
super().__init__()
|
||||
self.norm = nn.LayerNorm(dim)
|
||||
self.fn = fn
|
||||
def forward(self, x, **kwargs):
|
||||
return self.fn(self.norm(x), **kwargs)
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, hidden_dim, dropout = 0.):
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.Linear(dim, hidden_dim),
|
||||
nn.GELU(),
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(hidden_dim, dim),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
# cross attention
|
||||
|
||||
class CrossAttention(nn.Module):
|
||||
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
|
||||
super().__init__()
|
||||
inner_dim = dim_head * heads
|
||||
self.heads = heads
|
||||
self.scale = dim_head ** -0.5
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.to_q = nn.Linear(dim, inner_dim, bias = False)
|
||||
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
nn.Linear(inner_dim, dim),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
|
||||
def forward(self, x, context):
|
||||
b, n, _, h = *x.shape, self.heads
|
||||
|
||||
qkv = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1))
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)
|
||||
|
||||
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
||||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||
return self.to_out(out)
|
||||
|
||||
class Transformer(nn.Module):
|
||||
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
|
||||
super().__init__()
|
||||
self.layers = nn.ModuleList([])
|
||||
for _ in range(depth):
|
||||
self.layers.append(nn.ModuleList([
|
||||
PreNorm(dim, CrossAttention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
|
||||
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
|
||||
]))
|
||||
def forward(self, x, context):
|
||||
for attn, ff in self.layers:
|
||||
x = attn(x, context=context) + x
|
||||
x = ff(x) + x
|
||||
return x
|
||||
|
||||
# Masked Position Prediction Pre-Training
|
||||
|
||||
class MP3(nn.Module):
|
||||
def __init__(self, *, image_size, patch_size, masking_ratio, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64, dropout = 0.):
|
||||
super().__init__()
|
||||
image_height, image_width = pair(image_size)
|
||||
patch_height, patch_width = pair(patch_size)
|
||||
|
||||
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
|
||||
|
||||
assert masking_ratio > 0 and masking_ratio < 1, 'masking ratio must be kept between 0 and 1'
|
||||
self.masking_ratio = masking_ratio
|
||||
|
||||
num_patches = (image_height // patch_height) * (image_width // patch_width)
|
||||
patch_dim = channels * patch_height * patch_width
|
||||
|
||||
self.to_patch_embedding = nn.Sequential(
|
||||
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
|
||||
nn.LayerNorm(patch_dim),
|
||||
nn.Linear(patch_dim, dim),
|
||||
nn.LayerNorm(dim),
|
||||
)
|
||||
|
||||
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
|
||||
|
||||
self.mlp_head = nn.Sequential(
|
||||
nn.LayerNorm(dim),
|
||||
nn.Linear(dim, num_patches)
|
||||
)
|
||||
self.out = nn.Softmax(dim = -1)
|
||||
|
||||
def forward(self, img):
|
||||
device = img.device
|
||||
tokens = self.to_patch_embedding(img)
|
||||
batch, num_patches, *_ = tokens.shape
|
||||
|
||||
# Masking
|
||||
num_masked = int(self.masking_ratio * num_patches)
|
||||
rand_indices = torch.rand(batch, num_patches, device = device).argsort(dim = -1)
|
||||
masked_indices, unmasked_indices = rand_indices[:, :num_masked], rand_indices[:, num_masked:]
|
||||
|
||||
batch_range = torch.arange(batch, device = device)[:, None]
|
||||
tokens_unmasked = tokens[batch_range, unmasked_indices]
|
||||
|
||||
x = rearrange(self.mlp_head(self.transformer(tokens, tokens_unmasked)), 'b n d -> (b n) d')
|
||||
x = self.out(x)
|
||||
|
||||
# Define labels
|
||||
labels = repeat(torch.arange(num_patches, device = device), 'n -> b n', b = batch).flatten()
|
||||
loss = F.cross_entropy(x, labels)
|
||||
|
||||
return loss
|
||||
@@ -144,7 +144,9 @@ class NesT(nn.Module):
|
||||
|
||||
self.to_patch_embedding = nn.Sequential(
|
||||
Rearrange('b c (h p1) (w p2) -> b (p1 p2 c) h w', p1 = patch_size, p2 = patch_size),
|
||||
LayerNorm(patch_dim),
|
||||
nn.Conv2d(patch_dim, layer_dims[0], 1),
|
||||
LayerNorm(layer_dims[0])
|
||||
)
|
||||
|
||||
block_repeats = cast_tuple(block_repeats, num_hierarchies)
|
||||
|
||||
@@ -18,8 +18,11 @@ class SimMIM(nn.Module):
|
||||
|
||||
self.encoder = encoder
|
||||
num_patches, encoder_dim = encoder.pos_embedding.shape[-2:]
|
||||
self.to_patch, self.patch_to_emb = encoder.to_patch_embedding[:2]
|
||||
pixel_values_per_patch = self.patch_to_emb.weight.shape[-1]
|
||||
|
||||
self.to_patch = encoder.to_patch_embedding[0]
|
||||
self.patch_to_emb = nn.Sequential(*encoder.to_patch_embedding[1:])
|
||||
|
||||
pixel_values_per_patch = encoder.to_patch_embedding[2].weight.shape[-1]
|
||||
|
||||
# simple linear head
|
||||
|
||||
|
||||
@@ -91,7 +91,9 @@ class SimpleViT(nn.Module):
|
||||
|
||||
self.to_patch_embedding = nn.Sequential(
|
||||
Rearrange('b c (h p1) (w p2) -> b h w (p1 p2 c)', p1 = patch_height, p2 = patch_width),
|
||||
nn.LayerNorm(patch_dim),
|
||||
nn.Linear(patch_dim, dim),
|
||||
nn.LayerNorm(dim),
|
||||
)
|
||||
|
||||
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim)
|
||||
|
||||
@@ -85,7 +85,9 @@ class SimpleViT(nn.Module):
|
||||
|
||||
self.to_patch_embedding = nn.Sequential(
|
||||
Rearrange('b c (n p) -> b n (p c)', p = patch_size),
|
||||
nn.LayerNorm(patch_dim),
|
||||
nn.Linear(patch_dim, dim),
|
||||
nn.LayerNorm(dim),
|
||||
)
|
||||
|
||||
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim)
|
||||
|
||||
@@ -103,7 +103,9 @@ class SimpleViT(nn.Module):
|
||||
|
||||
self.to_patch_embedding = nn.Sequential(
|
||||
Rearrange('b c (f pf) (h p1) (w p2) -> b f h w (p1 p2 pf c)', p1 = patch_height, p2 = patch_width, pf = frame_patch_size),
|
||||
nn.LayerNorm(patch_dim),
|
||||
nn.Linear(patch_dim, dim),
|
||||
nn.LayerNorm(dim),
|
||||
)
|
||||
|
||||
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim)
|
||||
|
||||
143
vit_pytorch/simple_vit_with_patch_dropout.py
Normal file
143
vit_pytorch/simple_vit_with_patch_dropout.py
Normal file
@@ -0,0 +1,143 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from einops import rearrange
|
||||
from einops.layers.torch import Rearrange
|
||||
|
||||
# helpers
|
||||
|
||||
def pair(t):
|
||||
return t if isinstance(t, tuple) else (t, t)
|
||||
|
||||
def posemb_sincos_2d(patches, temperature = 10000, dtype = torch.float32):
|
||||
_, h, w, dim, device, dtype = *patches.shape, patches.device, patches.dtype
|
||||
|
||||
y, x = torch.meshgrid(torch.arange(h, device = device), torch.arange(w, device = device), indexing = 'ij')
|
||||
assert (dim % 4) == 0, 'feature dimension must be multiple of 4 for sincos emb'
|
||||
omega = torch.arange(dim // 4, device = device) / (dim // 4 - 1)
|
||||
omega = 1. / (temperature ** omega)
|
||||
|
||||
y = y.flatten()[:, None] * omega[None, :]
|
||||
x = x.flatten()[:, None] * omega[None, :]
|
||||
pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim = 1)
|
||||
return pe.type(dtype)
|
||||
|
||||
# patch dropout
|
||||
|
||||
class PatchDropout(nn.Module):
|
||||
def __init__(self, prob):
|
||||
super().__init__()
|
||||
assert 0 <= prob < 1.
|
||||
self.prob = prob
|
||||
|
||||
def forward(self, x):
|
||||
if not self.training or self.prob == 0.:
|
||||
return x
|
||||
|
||||
b, n, _, device = *x.shape, x.device
|
||||
|
||||
batch_indices = torch.arange(b, device = device)
|
||||
batch_indices = rearrange(batch_indices, '... -> ... 1')
|
||||
num_patches_keep = max(1, int(n * (1 - self.prob)))
|
||||
patch_indices_keep = torch.randn(b, n, device = device).topk(num_patches_keep, dim = -1).indices
|
||||
|
||||
return x[batch_indices, patch_indices_keep]
|
||||
|
||||
# classes
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, hidden_dim):
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.LayerNorm(dim),
|
||||
nn.Linear(dim, hidden_dim),
|
||||
nn.GELU(),
|
||||
nn.Linear(hidden_dim, dim),
|
||||
)
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, dim, heads = 8, dim_head = 64):
|
||||
super().__init__()
|
||||
inner_dim = dim_head * heads
|
||||
self.heads = heads
|
||||
self.scale = dim_head ** -0.5
|
||||
self.norm = nn.LayerNorm(dim)
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
|
||||
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
||||
self.to_out = nn.Linear(inner_dim, dim, bias = False)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.norm(x)
|
||||
|
||||
qkv = self.to_qkv(x).chunk(3, dim = -1)
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
|
||||
|
||||
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
|
||||
|
||||
attn = self.attend(dots)
|
||||
|
||||
out = torch.matmul(attn, v)
|
||||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||
return self.to_out(out)
|
||||
|
||||
class Transformer(nn.Module):
|
||||
def __init__(self, dim, depth, heads, dim_head, mlp_dim):
|
||||
super().__init__()
|
||||
self.layers = nn.ModuleList([])
|
||||
for _ in range(depth):
|
||||
self.layers.append(nn.ModuleList([
|
||||
Attention(dim, heads = heads, dim_head = dim_head),
|
||||
FeedForward(dim, mlp_dim)
|
||||
]))
|
||||
def forward(self, x):
|
||||
for attn, ff in self.layers:
|
||||
x = attn(x) + x
|
||||
x = ff(x) + x
|
||||
return x
|
||||
|
||||
class SimpleViT(nn.Module):
|
||||
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64, patch_dropout = 0.5):
|
||||
super().__init__()
|
||||
image_height, image_width = pair(image_size)
|
||||
patch_height, patch_width = pair(patch_size)
|
||||
|
||||
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
|
||||
|
||||
num_patches = (image_height // patch_height) * (image_width // patch_width)
|
||||
patch_dim = channels * patch_height * patch_width
|
||||
|
||||
self.to_patch_embedding = nn.Sequential(
|
||||
Rearrange('b c (h p1) (w p2) -> b h w (p1 p2 c)', p1 = patch_height, p2 = patch_width),
|
||||
nn.LayerNorm(patch_dim),
|
||||
nn.Linear(patch_dim, dim),
|
||||
nn.LayerNorm(dim)
|
||||
)
|
||||
|
||||
self.patch_dropout = PatchDropout(patch_dropout)
|
||||
|
||||
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim)
|
||||
|
||||
self.to_latent = nn.Identity()
|
||||
self.linear_head = nn.Sequential(
|
||||
nn.LayerNorm(dim),
|
||||
nn.Linear(dim, num_classes)
|
||||
)
|
||||
|
||||
def forward(self, img):
|
||||
*_, h, w, dtype = *img.shape, img.dtype
|
||||
|
||||
x = self.to_patch_embedding(img)
|
||||
pe = posemb_sincos_2d(x)
|
||||
x = rearrange(x, 'b ... d -> b (...) d') + pe
|
||||
|
||||
x = self.patch_dropout(x)
|
||||
|
||||
x = self.transformer(x)
|
||||
x = x.mean(dim = 1)
|
||||
|
||||
x = self.to_latent(x)
|
||||
return self.linear_head(x)
|
||||
@@ -71,7 +71,12 @@ class PatchEmbedding(nn.Module):
|
||||
self.dim = dim
|
||||
self.dim_out = dim_out
|
||||
self.patch_size = patch_size
|
||||
self.proj = nn.Conv2d(patch_size ** 2 * dim, dim_out, 1)
|
||||
|
||||
self.proj = nn.Sequential(
|
||||
LayerNorm(patch_size ** 2 * dim),
|
||||
nn.Conv2d(patch_size ** 2 * dim, dim_out, 1),
|
||||
LayerNorm(dim_out)
|
||||
)
|
||||
|
||||
def forward(self, fmap):
|
||||
p = self.patch_size
|
||||
|
||||
@@ -93,7 +93,9 @@ class ViT(nn.Module):
|
||||
|
||||
self.to_patch_embedding = nn.Sequential(
|
||||
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
|
||||
nn.LayerNorm(patch_dim),
|
||||
nn.Linear(patch_dim, dim),
|
||||
nn.LayerNorm(dim),
|
||||
)
|
||||
|
||||
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
|
||||
|
||||
@@ -84,7 +84,9 @@ class ViT(nn.Module):
|
||||
|
||||
self.to_patch_embedding = nn.Sequential(
|
||||
Rearrange('b c (n p) -> b n (p c)', p = patch_size),
|
||||
nn.LayerNorm(patch_dim),
|
||||
nn.Linear(patch_dim, dim),
|
||||
nn.LayerNorm(dim),
|
||||
)
|
||||
|
||||
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
|
||||
|
||||
@@ -95,7 +95,9 @@ class ViT(nn.Module):
|
||||
|
||||
self.to_patch_embedding = nn.Sequential(
|
||||
Rearrange('b c (f pf) (h p1) (w p2) -> b (f h w) (p1 p2 pf c)', p1 = patch_height, p2 = patch_width, pf = frame_patch_size),
|
||||
nn.LayerNorm(patch_dim),
|
||||
nn.Linear(patch_dim, dim),
|
||||
nn.LayerNorm(dim),
|
||||
)
|
||||
|
||||
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
|
||||
|
||||
152
vit_pytorch/vit_with_patch_dropout.py
Normal file
152
vit_pytorch/vit_with_patch_dropout.py
Normal file
@@ -0,0 +1,152 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from einops import rearrange, repeat
|
||||
from einops.layers.torch import Rearrange
|
||||
|
||||
# helpers
|
||||
|
||||
def pair(t):
|
||||
return t if isinstance(t, tuple) else (t, t)
|
||||
|
||||
# classes
|
||||
|
||||
class PatchDropout(nn.Module):
|
||||
def __init__(self, prob):
|
||||
super().__init__()
|
||||
assert 0 <= prob < 1.
|
||||
self.prob = prob
|
||||
|
||||
def forward(self, x):
|
||||
if not self.training or self.prob == 0.:
|
||||
return x
|
||||
|
||||
b, n, _, device = *x.shape, x.device
|
||||
|
||||
batch_indices = torch.arange(b, device = device)
|
||||
batch_indices = rearrange(batch_indices, '... -> ... 1')
|
||||
num_patches_keep = max(1, int(n * (1 - self.prob)))
|
||||
patch_indices_keep = torch.randn(b, n, device = device).topk(num_patches_keep, dim = -1).indices
|
||||
|
||||
return x[batch_indices, patch_indices_keep]
|
||||
|
||||
class PreNorm(nn.Module):
|
||||
def __init__(self, dim, fn):
|
||||
super().__init__()
|
||||
self.norm = nn.LayerNorm(dim)
|
||||
self.fn = fn
|
||||
def forward(self, x, **kwargs):
|
||||
return self.fn(self.norm(x), **kwargs)
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, hidden_dim, dropout = 0.):
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.Linear(dim, hidden_dim),
|
||||
nn.GELU(),
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(hidden_dim, dim),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
|
||||
super().__init__()
|
||||
inner_dim = dim_head * heads
|
||||
project_out = not (heads == 1 and dim_head == dim)
|
||||
|
||||
self.heads = heads
|
||||
self.scale = dim_head ** -0.5
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
nn.Linear(inner_dim, dim),
|
||||
nn.Dropout(dropout)
|
||||
) if project_out else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
qkv = self.to_qkv(x).chunk(3, dim = -1)
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
|
||||
|
||||
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
out = torch.matmul(attn, v)
|
||||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||
return self.to_out(out)
|
||||
|
||||
class Transformer(nn.Module):
|
||||
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
|
||||
super().__init__()
|
||||
self.layers = nn.ModuleList([])
|
||||
for _ in range(depth):
|
||||
self.layers.append(nn.ModuleList([
|
||||
PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
|
||||
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
|
||||
]))
|
||||
def forward(self, x):
|
||||
for attn, ff in self.layers:
|
||||
x = attn(x) + x
|
||||
x = ff(x) + x
|
||||
return x
|
||||
|
||||
class ViT(nn.Module):
|
||||
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0., patch_dropout = 0.25):
|
||||
super().__init__()
|
||||
image_height, image_width = pair(image_size)
|
||||
patch_height, patch_width = pair(patch_size)
|
||||
|
||||
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
|
||||
|
||||
num_patches = (image_height // patch_height) * (image_width // patch_width)
|
||||
patch_dim = channels * patch_height * patch_width
|
||||
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
|
||||
|
||||
self.to_patch_embedding = nn.Sequential(
|
||||
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
|
||||
nn.Linear(patch_dim, dim),
|
||||
)
|
||||
|
||||
self.pos_embedding = nn.Parameter(torch.randn(num_patches, dim))
|
||||
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
|
||||
|
||||
self.patch_dropout = PatchDropout(patch_dropout)
|
||||
self.dropout = nn.Dropout(emb_dropout)
|
||||
|
||||
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
|
||||
|
||||
self.pool = pool
|
||||
self.to_latent = nn.Identity()
|
||||
|
||||
self.mlp_head = nn.Sequential(
|
||||
nn.LayerNorm(dim),
|
||||
nn.Linear(dim, num_classes)
|
||||
)
|
||||
|
||||
def forward(self, img):
|
||||
x = self.to_patch_embedding(img)
|
||||
b, n, _ = x.shape
|
||||
|
||||
x += self.pos_embedding
|
||||
|
||||
x = self.patch_dropout(x)
|
||||
|
||||
cls_tokens = repeat(self.cls_token, '1 1 d -> b 1 d', b = b)
|
||||
|
||||
x = torch.cat((cls_tokens, x), dim=1)
|
||||
x = self.dropout(x)
|
||||
|
||||
x = self.transformer(x)
|
||||
|
||||
x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]
|
||||
|
||||
x = self.to_latent(x)
|
||||
return self.mlp_head(x)
|
||||
@@ -121,7 +121,9 @@ class ViT(nn.Module):
|
||||
|
||||
self.to_patch_embedding = nn.Sequential(
|
||||
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
|
||||
nn.LayerNorm(patch_dim),
|
||||
nn.Linear(patch_dim, dim),
|
||||
nn.LayerNorm(dim)
|
||||
)
|
||||
|
||||
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
|
||||
|
||||
@@ -120,7 +120,9 @@ class ViT(nn.Module):
|
||||
|
||||
self.to_patch_embedding = nn.Sequential(
|
||||
Rearrange('b c (f pf) (h p1) (w p2) -> b f (h w) (p1 p2 pf c)', p1 = patch_height, p2 = patch_width, pf = frame_patch_size),
|
||||
nn.LayerNorm(patch_dim),
|
||||
nn.Linear(patch_dim, dim),
|
||||
nn.LayerNorm(dim)
|
||||
)
|
||||
|
||||
self.pos_embedding = nn.Parameter(torch.randn(1, num_frame_patches, num_image_patches, dim))
|
||||
|
||||
Reference in New Issue
Block a user