mirror of
https://github.com/lucidrains/vit-pytorch.git
synced 2025-12-30 08:02:29 +00:00
Compare commits
3 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
1374b93145 | ||
|
|
4386742cd1 | ||
|
|
5cf8384c56 |
12
README.md
12
README.md
@@ -2201,4 +2201,16 @@ Coming from computer vision and new to transformers? Here are some resources tha
|
||||
}
|
||||
```
|
||||
|
||||
```bibtex
|
||||
@misc{carrigg2025decorrelationspeedsvisiontransformers,
|
||||
title = {Decorrelation Speeds Up Vision Transformers},
|
||||
author = {Kieran Carrigg and Rob van Gastel and Melda Yeghaian and Sander Dalm and Faysal Boughorbel and Marcel van Gerven},
|
||||
year = {2025},
|
||||
eprint = {2510.14657},
|
||||
archivePrefix = {arXiv},
|
||||
primaryClass = {cs.CV},
|
||||
url = {https://arxiv.org/abs/2510.14657},
|
||||
}
|
||||
```
|
||||
|
||||
*I visualise a time when we will be to robots what dogs are to humans, and I’m rooting for the machines.* — Claude Shannon
|
||||
|
||||
@@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
||||
|
||||
[project]
|
||||
name = "vit-pytorch"
|
||||
version = "1.14.5"
|
||||
version = "1.15.4"
|
||||
description = "Vision Transformer (ViT) - Pytorch"
|
||||
readme = { file = "README.md", content-type = "text/markdown" }
|
||||
license = { file = "LICENSE" }
|
||||
|
||||
107
train_vit_decorr.py
Normal file
107
train_vit_decorr.py
Normal file
@@ -0,0 +1,107 @@
|
||||
# /// script
|
||||
# dependencies = [
|
||||
# "accelerate",
|
||||
# "vit-pytorch",
|
||||
# "wandb"
|
||||
# ]
|
||||
# ///
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
import torchvision.transforms as T
|
||||
from torchvision.datasets import CIFAR100
|
||||
|
||||
# constants
|
||||
|
||||
BATCH_SIZE = 32
|
||||
LEARNING_RATE = 3e-4
|
||||
EPOCHS = 10
|
||||
DECORR_LOSS_WEIGHT = 1e-1
|
||||
|
||||
TRACK_EXPERIMENT_ONLINE = False
|
||||
|
||||
# helpers
|
||||
|
||||
def exists(v):
|
||||
return v is not None
|
||||
|
||||
# data
|
||||
|
||||
transform = T.Compose([
|
||||
T.ToTensor(),
|
||||
T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
||||
])
|
||||
|
||||
dataset = CIFAR100(
|
||||
root = 'data',
|
||||
download = True,
|
||||
train = True,
|
||||
transform = transform
|
||||
)
|
||||
|
||||
dataloader = DataLoader(dataset, batch_size = BATCH_SIZE, shuffle = True)
|
||||
|
||||
# model
|
||||
|
||||
from vit_pytorch.vit_with_decorr import ViT
|
||||
|
||||
vit = ViT(
|
||||
dim = 128,
|
||||
num_classes = 100,
|
||||
image_size = 32,
|
||||
patch_size = 4,
|
||||
depth = 6,
|
||||
heads = 8,
|
||||
dim_head = 64,
|
||||
mlp_dim = 128 * 4,
|
||||
decorr_sample_frac = 1. # use all tokens
|
||||
)
|
||||
|
||||
# optim
|
||||
|
||||
from torch.optim import Adam
|
||||
|
||||
optim = Adam(vit.parameters(), lr = LEARNING_RATE)
|
||||
|
||||
# prepare
|
||||
|
||||
from accelerate import Accelerator
|
||||
|
||||
accelerator = Accelerator()
|
||||
|
||||
vit, optim, dataloader = accelerator.prepare(vit, optim, dataloader)
|
||||
|
||||
# experiment
|
||||
|
||||
import wandb
|
||||
|
||||
wandb.init(
|
||||
project = 'vit-decorr',
|
||||
mode = 'disabled' if not TRACK_EXPERIMENT_ONLINE else 'online'
|
||||
)
|
||||
|
||||
wandb.run.name = 'baseline'
|
||||
|
||||
# loop
|
||||
|
||||
for _ in range(EPOCHS):
|
||||
for images, labels in dataloader:
|
||||
|
||||
logits, decorr_aux_loss = vit(images)
|
||||
loss = F.cross_entropy(logits, labels)
|
||||
|
||||
|
||||
total_loss = (
|
||||
loss +
|
||||
decorr_aux_loss * DECORR_LOSS_WEIGHT
|
||||
)
|
||||
|
||||
wandb.log(dict(loss = loss, decorr_loss = decorr_aux_loss))
|
||||
|
||||
accelerator.print(f'loss: {loss.item():.3f} | decorr aux loss: {decorr_aux_loss.item():.3f}')
|
||||
|
||||
accelerator.backward(total_loss)
|
||||
optim.step()
|
||||
optim.zero_grad()
|
||||
@@ -1,4 +1,5 @@
|
||||
from __future__ import annotations
|
||||
from contextlib import nullcontext
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
@@ -343,7 +344,8 @@ class VAT(Module):
|
||||
extra = None, # (b d) - batch, dim extra
|
||||
tasks = None, # (b)
|
||||
actions = None, # (b k d) - batch, action chunk length, action dimension
|
||||
return_hiddens = False
|
||||
return_hiddens = False,
|
||||
freeze_vit = False
|
||||
):
|
||||
batch = video_or_image.shape[0]
|
||||
return_loss = exists(actions)
|
||||
@@ -371,7 +373,10 @@ class VAT(Module):
|
||||
|
||||
# get representation trajectory from vit
|
||||
|
||||
embed, hiddens = self.vit(images, return_hiddens = True)
|
||||
vit_forward_context = torch.no_grad if freeze_vit else nullcontext
|
||||
|
||||
with vit_forward_context():
|
||||
embed, hiddens = self.vit(images, return_hiddens = True)
|
||||
|
||||
hiddens = cat((hiddens, embed[None, ...]))
|
||||
|
||||
@@ -511,7 +516,7 @@ if __name__ == '__main__':
|
||||
|
||||
actions = torch.randn(2, 7, 20) # actions for learning
|
||||
|
||||
loss = vat(images, actions = actions, tasks = tasks, extra = extra)
|
||||
loss = vat(images, actions = actions, tasks = tasks, extra = extra, freeze_vit = True)
|
||||
loss.backward()
|
||||
|
||||
# after much training
|
||||
|
||||
234
vit_pytorch/vit_with_decorr.py
Normal file
234
vit_pytorch/vit_with_decorr.py
Normal file
@@ -0,0 +1,234 @@
|
||||
# https://arxiv.org/abs/2510.14657
|
||||
# but instead of their decorr module updated with SGD, remove all projections and just return a decorrelation auxiliary loss
|
||||
|
||||
import torch
|
||||
from torch import nn, stack, tensor
|
||||
import torch.nn.functional as F
|
||||
from torch.nn import Module, ModuleList
|
||||
|
||||
from einops import rearrange, repeat, reduce, einsum, pack, unpack
|
||||
from einops.layers.torch import Rearrange
|
||||
|
||||
# helpers
|
||||
|
||||
def exists(v):
|
||||
return v is not None
|
||||
|
||||
def default(v, d):
|
||||
return v if exists(v) else d
|
||||
|
||||
def pair(t):
|
||||
return t if isinstance(t, tuple) else (t, t)
|
||||
|
||||
# decorr loss
|
||||
|
||||
class DecorrelationLoss(Module):
|
||||
def __init__(
|
||||
self,
|
||||
sample_frac = 1.,
|
||||
soft_validate_num_sampled = False
|
||||
):
|
||||
super().__init__()
|
||||
assert 0. <= sample_frac <= 1.
|
||||
self.need_sample = sample_frac < 1.
|
||||
self.sample_frac = sample_frac
|
||||
|
||||
self.soft_validate_num_sampled = soft_validate_num_sampled
|
||||
self.register_buffer('zero', tensor(0.), persistent = False)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
tokens
|
||||
):
|
||||
batch, seq_len, dim, device = *tokens.shape[-3:], tokens.device
|
||||
|
||||
if self.need_sample:
|
||||
num_sampled = int(seq_len * self.sample_frac)
|
||||
|
||||
assert self.soft_validate_num_sampled or num_sampled >= 2.
|
||||
|
||||
if num_sampled <= 1:
|
||||
return self.zero
|
||||
|
||||
tokens, packed_shape = pack([tokens], '* n d e')
|
||||
|
||||
indices = torch.randn(tokens.shape[:2]).argsort(dim = -1)[..., :num_sampled, :]
|
||||
|
||||
batch_arange = torch.arange(tokens.shape[0], device = tokens.device)
|
||||
batch_arange = rearrange(batch_arange, 'b -> b 1')
|
||||
|
||||
tokens = tokens[batch_arange, indices]
|
||||
tokens, = unpack(tokens, packed_shape, '* n d e')
|
||||
|
||||
dist = einsum(tokens, tokens, '... n d, ... n e -> ... d e') / tokens.shape[-2]
|
||||
eye = torch.eye(dim, device = device)
|
||||
|
||||
loss = dist.pow(2) * (1. - eye) / ((dim - 1) * dim)
|
||||
|
||||
loss = reduce(loss, '... b d e -> b', 'sum')
|
||||
return loss.mean()
|
||||
|
||||
# classes
|
||||
|
||||
class FeedForward(Module):
|
||||
def __init__(self, dim, hidden_dim, dropout = 0.):
|
||||
super().__init__()
|
||||
self.norm = nn.LayerNorm(dim)
|
||||
|
||||
self.net = nn.Sequential(
|
||||
nn.Linear(dim, hidden_dim),
|
||||
nn.GELU(),
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(hidden_dim, dim),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
normed = self.norm(x)
|
||||
return self.net(x), normed
|
||||
|
||||
class Attention(Module):
|
||||
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
|
||||
super().__init__()
|
||||
inner_dim = dim_head * heads
|
||||
project_out = not (heads == 1 and dim_head == dim)
|
||||
|
||||
self.norm = nn.LayerNorm(dim)
|
||||
self.heads = heads
|
||||
self.scale = dim_head ** -0.5
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
nn.Linear(inner_dim, dim),
|
||||
nn.Dropout(dropout)
|
||||
) if project_out else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
normed = self.norm(x)
|
||||
|
||||
qkv = self.to_qkv(normed).chunk(3, dim = -1)
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
|
||||
|
||||
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
out = torch.matmul(attn, v)
|
||||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||
|
||||
return self.to_out(out), normed
|
||||
|
||||
class Transformer(Module):
|
||||
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
|
||||
super().__init__()
|
||||
self.norm = nn.LayerNorm(dim)
|
||||
self.layers = ModuleList([])
|
||||
|
||||
for _ in range(depth):
|
||||
self.layers.append(ModuleList([
|
||||
Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout),
|
||||
FeedForward(dim, mlp_dim, dropout = dropout)
|
||||
]))
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
normed_inputs = []
|
||||
|
||||
for attn, ff in self.layers:
|
||||
attn_out, attn_normed_inp = attn(x)
|
||||
x = attn_out + x
|
||||
|
||||
ff_out, ff_normed_inp = ff(x)
|
||||
x = ff_out + x
|
||||
|
||||
normed_inputs.append(attn_normed_inp)
|
||||
normed_inputs.append(ff_normed_inp)
|
||||
|
||||
return self.norm(x), stack(normed_inputs)
|
||||
|
||||
class ViT(Module):
|
||||
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0., decorr_sample_frac = 1.):
|
||||
super().__init__()
|
||||
image_height, image_width = pair(image_size)
|
||||
patch_height, patch_width = pair(patch_size)
|
||||
|
||||
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
|
||||
|
||||
num_patches = (image_height // patch_height) * (image_width // patch_width)
|
||||
patch_dim = channels * patch_height * patch_width
|
||||
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
|
||||
|
||||
self.to_patch_embedding = nn.Sequential(
|
||||
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width),
|
||||
nn.LayerNorm(patch_dim),
|
||||
nn.Linear(patch_dim, dim),
|
||||
nn.LayerNorm(dim),
|
||||
)
|
||||
|
||||
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
|
||||
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
|
||||
self.dropout = nn.Dropout(emb_dropout)
|
||||
|
||||
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
|
||||
|
||||
self.pool = pool
|
||||
self.to_latent = nn.Identity()
|
||||
|
||||
self.mlp_head = nn.Linear(dim, num_classes)
|
||||
|
||||
# decorrelation loss related
|
||||
|
||||
self.has_decorr_loss = decorr_sample_frac > 0.
|
||||
|
||||
if self.has_decorr_loss:
|
||||
self.decorr_loss = DecorrelationLoss(decorr_sample_frac)
|
||||
|
||||
self.register_buffer('zero', torch.tensor(0.), persistent = False)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
img,
|
||||
return_decorr_aux_loss = None
|
||||
):
|
||||
return_decorr_aux_loss = default(return_decorr_aux_loss, self.training) and self.has_decorr_loss
|
||||
|
||||
x = self.to_patch_embedding(img)
|
||||
b, n, _ = x.shape
|
||||
|
||||
cls_tokens = repeat(self.cls_token, '1 1 d -> b 1 d', b = b)
|
||||
x = torch.cat((cls_tokens, x), dim=1)
|
||||
x += self.pos_embedding[:, :(n + 1)]
|
||||
x = self.dropout(x)
|
||||
|
||||
x, normed_layer_inputs = self.transformer(x)
|
||||
|
||||
# maybe return decor loss
|
||||
|
||||
decorr_aux_loss = self.zero
|
||||
|
||||
if return_decorr_aux_loss:
|
||||
decorr_aux_loss = self.decorr_loss(normed_layer_inputs)
|
||||
|
||||
x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]
|
||||
|
||||
x = self.to_latent(x)
|
||||
return self.mlp_head(x), decorr_aux_loss
|
||||
|
||||
# quick test
|
||||
|
||||
if __name__ == '__main__':
|
||||
decorr_loss = DecorrelationLoss(0.1)
|
||||
|
||||
hiddens = torch.randn(6, 2, 512, 256)
|
||||
|
||||
decorr_loss(hiddens)
|
||||
decorr_loss(hiddens[0])
|
||||
|
||||
decorr_loss = DecorrelationLoss(0.0001, soft_validate_num_sampled = True)
|
||||
out = decorr_loss(hiddens)
|
||||
assert out.item() == 0
|
||||
Reference in New Issue
Block a user