mirror of
https://github.com/lucidrains/vit-pytorch.git
synced 2025-12-30 08:02:29 +00:00
Compare commits
1 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
be67c142aa |
2
setup.py
2
setup.py
@@ -3,7 +3,7 @@ from setuptools import setup, find_packages
|
||||
setup(
|
||||
name = 'vit-pytorch',
|
||||
packages = find_packages(exclude=['examples']),
|
||||
version = '0.7.4',
|
||||
version = '0.7.5',
|
||||
license='MIT',
|
||||
description = 'Vision Transformer (ViT) - Pytorch',
|
||||
author = 'Phil Wang',
|
||||
|
||||
@@ -7,11 +7,16 @@ from vit_pytorch.vit_pytorch import Transformer
|
||||
from einops import rearrange, repeat
|
||||
from einops.layers.torch import Rearrange
|
||||
|
||||
# classes
|
||||
# helpers
|
||||
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
def conv_output_size(image_size, kernel_size, stride, padding):
|
||||
return int(((image_size - kernel_size + (2 * padding)) / stride) + 1)
|
||||
|
||||
# classes
|
||||
|
||||
class RearrangeImage(nn.Module):
|
||||
def forward(self, x):
|
||||
return rearrange(x, 'b (h w) c -> b c h w', h = int(math.sqrt(x.shape[1])))
|
||||
@@ -20,7 +25,7 @@ class RearrangeImage(nn.Module):
|
||||
|
||||
class T2TViT(nn.Module):
|
||||
def __init__(
|
||||
self, *, image_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0., t2t_layers = ((7, 4), (3, 2), (3, 2))):
|
||||
self, *, image_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0., transformer = None, t2t_layers = ((7, 4), (3, 2), (3, 2))):
|
||||
super().__init__()
|
||||
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
|
||||
|
||||
@@ -47,7 +52,7 @@ class T2TViT(nn.Module):
|
||||
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
|
||||
self.dropout = nn.Dropout(emb_dropout)
|
||||
|
||||
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
|
||||
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) if not exists(transformer) else transformer
|
||||
|
||||
self.pool = pool
|
||||
self.to_latent = nn.Identity()
|
||||
|
||||
Reference in New Issue
Block a user