Compare commits

...

1 Commits
1.4.2 ... 0.2.2

3 changed files with 22 additions and 13 deletions

View File

@@ -24,8 +24,8 @@ v = ViT(
depth = 6,
heads = 8,
mlp_dim = 2048,
attn_dropout = 0.1,
ff_dropout = 0.1
dropout = 0.1,
emb_dropout = 0.1
)
img = torch.randn(1, 3, 256, 256)

View File

@@ -3,7 +3,7 @@ from setuptools import setup, find_packages
setup(
name = 'vit-pytorch',
packages = find_packages(exclude=['examples']),
version = '0.2.1',
version = '0.2.2',
license='MIT',
description = 'Vision Transformer (ViT) - Pytorch',
author = 'Phil Wang',

View File

@@ -25,7 +25,8 @@ class FeedForward(nn.Module):
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim)
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
@@ -37,8 +38,11 @@ class Attention(nn.Module):
self.scale = dim ** -0.5
self.to_qkv = nn.Linear(dim, dim * 3, bias = False)
self.to_out = nn.Linear(dim, dim)
self.dropout = nn.Dropout(dropout)
self.to_out = nn.Sequential(
nn.Linear(dim, dim),
nn.Dropout(dropout)
)
def forward(self, x, mask = None):
b, n, _, h = *x.shape, self.heads
qkv = self.to_qkv(x)
@@ -54,7 +58,6 @@ class Attention(nn.Module):
del mask
attn = dots.softmax(dim=-1)
attn = self.dropout(attn)
out = torch.einsum('bhij,bhjd->bhid', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
@@ -62,13 +65,13 @@ class Attention(nn.Module):
return out
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, mlp_dim, attn_dropout, ff_dropout):
def __init__(self, dim, depth, heads, mlp_dim, dropout):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Residual(PreNorm(dim, Attention(dim, heads = heads, dropout = attn_dropout))),
Residual(PreNorm(dim, FeedForward(dim, mlp_dim, dropout = ff_dropout)))
Residual(PreNorm(dim, Attention(dim, heads = heads, dropout = dropout))),
Residual(PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)))
]))
def forward(self, x, mask = None):
for attn, ff in self.layers:
@@ -77,7 +80,7 @@ class Transformer(nn.Module):
return x
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, attn_dropout = 0., ff_dropout = 0.):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dropout = 0., emb_dropout = 0.):
super().__init__()
assert image_size % patch_size == 0, 'image dimensions must be divisible by the patch size'
num_patches = (image_size // patch_size) ** 2
@@ -88,7 +91,9 @@ class ViT(nn.Module):
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.patch_to_embedding = nn.Linear(patch_dim, dim)
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.transformer = Transformer(dim, depth, heads, mlp_dim, attn_dropout, ff_dropout)
self.dropout = nn.Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, heads, mlp_dim, dropout)
self.to_cls_token = nn.Identity()
@@ -96,7 +101,9 @@ class ViT(nn.Module):
nn.LayerNorm(dim),
nn.Linear(dim, mlp_dim),
nn.GELU(),
nn.Linear(mlp_dim, num_classes)
nn.Dropout(dropout),
nn.Linear(mlp_dim, num_classes),
nn.Dropout(dropout)
)
def forward(self, img, mask = None):
@@ -108,6 +115,8 @@ class ViT(nn.Module):
cls_tokens = self.cls_token.expand(img.shape[0], -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding
x = self.dropout(x)
x = self.transformer(x, mask)
x = self.to_cls_token(x[:, 0])