Compare commits

...

3 Commits

Author SHA1 Message Date
lucidrains
3fdb8dd352 fix pypi 2023-10-01 08:14:20 -07:00
lucidrains
a36546df23 add simple vit with register tokens example, cite 2023-10-01 08:11:40 -07:00
lucidrains
d830b05f06 address https://github.com/lucidrains/vit-pytorch/issues/279 2023-09-10 09:32:57 -07:00
5 changed files with 155 additions and 12 deletions

View File

@@ -1,11 +1,16 @@
# This workflows will upload a Python Package using Twine when a release is created
# This workflow will upload a Python Package using Twine when a release is created
# For more information see: https://help.github.com/en/actions/language-and-framework-guides/using-python-with-github-actions#publishing-to-package-registries
# This workflow uses actions that are not certified by GitHub.
# They are provided by a third-party and are governed by
# separate terms of service, privacy policy, and support
# documentation.
name: Upload Python Package
on:
release:
types: [created]
types: [published]
jobs:
deploy:
@@ -21,11 +26,11 @@ jobs:
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install setuptools wheel twine
- name: Build and publish
env:
TWINE_USERNAME: ${{ secrets.PYPI_USERNAME }}
TWINE_PASSWORD: ${{ secrets.PYPI_PASSWORD }}
run: |
python setup.py sdist bdist_wheel
twine upload dist/*
pip install build
- name: Build package
run: python -m build
- name: Publish package
uses: pypa/gh-action-pypi-publish@27b31702a0e7fc50959f5ad993c78deac1bdfc29
with:
user: __token__
password: ${{ secrets.PYPI_API_TOKEN }}

View File

@@ -2020,4 +2020,13 @@ Coming from computer vision and new to transformers? Here are some resources tha
}
```
```bibtex
@inproceedings{Darcet2023VisionTN,
title = {Vision Transformers Need Registers},
author = {Timoth'ee Darcet and Maxime Oquab and Julien Mairal and Piotr Bojanowski},
year = {2023},
url = {https://api.semanticscholar.org/CorpusID:263134283}
}
```
*I visualise a time when we will be to robots what dogs are to humans, and Im rooting for the machines.* — Claude Shannon

View File

@@ -3,7 +3,7 @@ from setuptools import setup, find_packages
setup(
name = 'vit-pytorch',
packages = find_packages(exclude=['examples']),
version = '1.4.4',
version = '1.5.0',
license='MIT',
description = 'Vision Transformer (ViT) - Pytorch',
long_description_content_type = 'text/markdown',

View File

@@ -115,7 +115,7 @@ class CrossTransformer(nn.Module):
for _ in range(depth):
self.layers.append(nn.ModuleList([
ProjectInOut(sm_dim, lg_dim, Attention(lg_dim, heads = heads, dim_head = dim_head, dropout = dropout)),
ProjectInOut(lg_dim, sm_dim, ttention(sm_dim, heads = heads, dim_head = dim_head, dropout = dropout))
ProjectInOut(lg_dim, sm_dim, Attention(sm_dim, heads = heads, dim_head = dim_head, dropout = dropout))
]))
def forward(self, sm_tokens, lg_tokens):

View File

@@ -0,0 +1,129 @@
import torch
from torch import nn
from einops import rearrange, repeat, pack, unpack
from einops.layers.torch import Rearrange
# helpers
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def posemb_sincos_2d(h, w, dim, temperature: int = 10000, dtype = torch.float32):
y, x = torch.meshgrid(torch.arange(h), torch.arange(w), indexing="ij")
assert (dim % 4) == 0, "feature dimension must be multiple of 4 for sincos emb"
omega = torch.arange(dim // 4) / (dim // 4 - 1)
omega = 1.0 / (temperature ** omega)
y = y.flatten()[:, None] * omega[None, :]
x = x.flatten()[:, None] * omega[None, :]
pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim=1)
return pe.type(dtype)
# classes
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, dim),
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Linear(inner_dim, dim, bias = False)
def forward(self, x):
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim, heads = heads, dim_head = dim_head),
FeedForward(dim, mlp_dim)
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return self.norm(x)
class SimpleViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, num_register_tokens = 4, channels = 3, dim_head = 64):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
patch_dim = channels * patch_height * patch_width
self.to_patch_embedding = nn.Sequential(
Rearrange("b c (h p1) (w p2) -> b (h w) (p1 p2 c)", p1 = patch_height, p2 = patch_width),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim),
)
self.register_tokens = nn.Parameter(torch.randn(num_register_tokens, dim))
self.pos_embedding = posemb_sincos_2d(
h = image_height // patch_height,
w = image_width // patch_width,
dim = dim,
)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim)
self.pool = "mean"
self.to_latent = nn.Identity()
self.linear_head = nn.Linear(dim, num_classes)
def forward(self, img):
batch, device = img.shape[0], img.device
x = self.to_patch_embedding(img)
x += self.pos_embedding.to(device, dtype=x.dtype)
r = repeat(self.register_tokens, 'n d -> b n d', b = batch)
x, ps = pack([x, r], 'b * d')
x = self.transformer(x)
x, _ = unpack(x, ps, 'b * d')
x = x.mean(dim = 1)
x = self.to_latent(x)
return self.linear_head(x)