Compare commits

...

22 Commits
1.4.4 ... 1.7.0

Author SHA1 Message Date
lucidrains
e3256d77cd fix t2t vit having two layernorms, and make final layernorm in distillation wrapper configurable, default to False for vit 2024-06-11 15:12:53 -07:00
lucidrains
90be7233a3 rotary needs to be done with full precision to be safe 2024-05-11 08:04:32 -07:00
Phil Wang
bca88e9039 address https://github.com/lucidrains/vit-pytorch/issues/300 2024-05-02 08:46:39 -07:00
Phil Wang
96f66d2754 address https://github.com/lucidrains/vit-pytorch/issues/306 2024-04-18 09:44:29 -07:00
Phil Wang
12249dcc5f address https://github.com/lucidrains/vit-pytorch/issues/304 2024-04-17 09:40:03 -07:00
SOUMYADIP MAL
8b8da8dede Update setup.py (#303) 2024-04-17 08:21:30 -07:00
lucidrains
5578ac472f address https://github.com/lucidrains/vit-pytorch/issues/292 2023-12-23 08:11:39 -08:00
lucidrains
d446a41243 share an idea that should be tried if it has not been 2023-11-14 16:55:36 -08:00
lucidrains
0ad09c4cbc allow channels to be customizable for cvt 2023-10-25 14:47:58 -07:00
Phil Wang
92b69321f4 1.6.2 2023-10-24 12:47:38 -07:00
Artem Lukin
fb4ac25174 Fix typo in LayerNorm (#285)
Co-authored-by: Artem Lukin <artyom.lukin98@gmail.com>
2023-10-24 12:47:21 -07:00
lucidrains
53fe345e85 no longer needed with einops 0.7 2023-10-19 18:16:46 -07:00
Phil Wang
efb94608ea readme 2023-10-19 09:38:35 -07:00
lucidrains
51310d1d07 add xcit diagram 2023-10-13 09:18:12 -07:00
Phil Wang
1616288e30 add xcit (#284)
* add xcit

* use Rearrange layers

* give cross correlation transformer a final norm at end

* document
2023-10-13 09:15:13 -07:00
Jason Chou
9e1e824385 Update README.md (#283)
`patch_size` is size of patches, not number of patches
2023-10-09 11:33:56 -07:00
lucidrains
bbb24e34d4 give a learned bias to and from registers for maxvit + register token variant 2023-10-06 10:40:26 -07:00
lucidrains
df8733d86e improvise a max vit with register tokens 2023-10-06 10:27:36 -07:00
lucidrains
680d446e46 document in readme later 2023-10-03 09:26:02 -07:00
lucidrains
3fdb8dd352 fix pypi 2023-10-01 08:14:20 -07:00
lucidrains
a36546df23 add simple vit with register tokens example, cite 2023-10-01 08:11:40 -07:00
lucidrains
d830b05f06 address https://github.com/lucidrains/vit-pytorch/issues/279 2023-09-10 09:32:57 -07:00
19 changed files with 1202 additions and 49 deletions

View File

@@ -1,11 +1,16 @@
# This workflows will upload a Python Package using Twine when a release is created
# This workflow will upload a Python Package using Twine when a release is created
# For more information see: https://help.github.com/en/actions/language-and-framework-guides/using-python-with-github-actions#publishing-to-package-registries
# This workflow uses actions that are not certified by GitHub.
# They are provided by a third-party and are governed by
# separate terms of service, privacy policy, and support
# documentation.
name: Upload Python Package
on:
release:
types: [created]
types: [published]
jobs:
deploy:
@@ -21,11 +26,11 @@ jobs:
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install setuptools wheel twine
- name: Build and publish
env:
TWINE_USERNAME: ${{ secrets.PYPI_USERNAME }}
TWINE_PASSWORD: ${{ secrets.PYPI_PASSWORD }}
run: |
python setup.py sdist bdist_wheel
twine upload dist/*
pip install build
- name: Build package
run: python -m build
- name: Publish package
uses: pypa/gh-action-pypi-publish@27b31702a0e7fc50959f5ad993c78deac1bdfc29
with:
user: __token__
password: ${{ secrets.PYPI_API_TOKEN }}

View File

@@ -15,7 +15,7 @@ jobs:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: [3.7, 3.8, 3.9]
python-version: [3.8, 3.9]
steps:
- uses: actions/checkout@v2

View File

@@ -25,6 +25,7 @@
- [MaxViT](#maxvit)
- [NesT](#nest)
- [MobileViT](#mobilevit)
- [XCiT](#xcit)
- [Masked Autoencoder](#masked-autoencoder)
- [Simple Masked Image Modeling](#simple-masked-image-modeling)
- [Masked Patch Prediction](#masked-patch-prediction)
@@ -92,7 +93,7 @@ preds = v(img) # (1, 1000)
- `image_size`: int.
Image size. If you have rectangular images, make sure your image size is the maximum of the width and height
- `patch_size`: int.
Number of patches. `image_size` must be divisible by `patch_size`.
Size of patches. `image_size` must be divisible by `patch_size`.
The number of patches is: ` n = (image_size // patch_size) ** 2` and `n` **must be greater than 16**.
- `num_classes`: int.
Number of classes to classify.
@@ -772,6 +773,38 @@ img = torch.randn(1, 3, 256, 256)
pred = mbvit_xs(img) # (1, 1000)
```
## XCiT
<img src="./images/xcit.png" width="400px"></img>
This <a href="https://arxiv.org/abs/2106.09681">paper</a> introduces the cross covariance attention (abbreviated XCA). One can think of it as doing attention across the features dimension rather than the spatial one (another perspective would be a dynamic 1x1 convolution, the kernel being attention map defined by spatial correlations).
Technically, this amounts to simply transposing the query, key, values before executing cosine similarity attention with learned temperature.
```python
import torch
from vit_pytorch.xcit import XCiT
v = XCiT(
image_size = 256,
patch_size = 32,
num_classes = 1000,
dim = 1024,
depth = 12, # depth of xcit transformer
cls_depth = 2, # depth of cross attention of CLS tokens to patch, attention pool at end
heads = 16,
mlp_dim = 2048,
dropout = 0.1,
emb_dropout = 0.1,
layer_dropout = 0.05, # randomly dropout 5% of the layers
local_patch_kernel_size = 3 # kernel size of the local patch interaction module (depthwise convs)
)
img = torch.randn(1, 3, 256, 256)
preds = v(img) # (1, 1000)
```
## Simple Masked Image Modeling
<img src="./images/simmim.png" width="400px"/>
@@ -2020,4 +2053,23 @@ Coming from computer vision and new to transformers? Here are some resources tha
}
```
```bibtex
@inproceedings{Darcet2023VisionTN,
title = {Vision Transformers Need Registers},
author = {Timoth'ee Darcet and Maxime Oquab and Julien Mairal and Piotr Bojanowski},
year = {2023},
url = {https://api.semanticscholar.org/CorpusID:263134283}
}
```
```bibtex
@inproceedings{ElNouby2021XCiTCI,
title = {XCiT: Cross-Covariance Image Transformers},
author = {Alaaeldin El-Nouby and Hugo Touvron and Mathilde Caron and Piotr Bojanowski and Matthijs Douze and Armand Joulin and Ivan Laptev and Natalia Neverova and Gabriel Synnaeve and Jakob Verbeek and Herv{\'e} J{\'e}gou},
booktitle = {Neural Information Processing Systems},
year = {2021},
url = {https://api.semanticscholar.org/CorpusID:235458262}
}
```
*I visualise a time when we will be to robots what dogs are to humans, and Im rooting for the machines.* — Claude Shannon

BIN
images/xcit.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 814 KiB

View File

@@ -1,11 +1,15 @@
from setuptools import setup, find_packages
with open('README.md') as f:
long_description = f.read()
setup(
name = 'vit-pytorch',
packages = find_packages(exclude=['examples']),
version = '1.4.4',
version = '1.7.0',
license='MIT',
description = 'Vision Transformer (ViT) - Pytorch',
long_description=long_description,
long_description_content_type = 'text/markdown',
author = 'Phil Wang',
author_email = 'lucidrains@gmail.com',
@@ -16,7 +20,7 @@ setup(
'image recognition'
],
install_requires=[
'einops>=0.6.1',
'einops>=0.7.0',
'torch>=1.10',
'torchvision'
],

View File

@@ -1,10 +1,3 @@
import torch
from packaging import version
if version.parse(torch.__version__) >= version.parse('2.0.0'):
from einops._torch_specific import allow_ops_in_compiled_graph
allow_ops_in_compiled_graph()
from vit_pytorch.vit import ViT
from vit_pytorch.simple_vit import SimpleViT

View File

@@ -115,7 +115,7 @@ class CrossTransformer(nn.Module):
for _ in range(depth):
self.layers.append(nn.ModuleList([
ProjectInOut(sm_dim, lg_dim, Attention(lg_dim, heads = heads, dim_head = dim_head, dropout = dropout)),
ProjectInOut(lg_dim, sm_dim, ttention(sm_dim, heads = heads, dim_head = dim_head, dropout = dropout))
ProjectInOut(lg_dim, sm_dim, Attention(sm_dim, heads = heads, dim_head = dim_head, dropout = dropout))
]))
def forward(self, sm_tokens, lg_tokens):
@@ -170,12 +170,13 @@ class ImageEmbedder(nn.Module):
dim,
image_size,
patch_size,
dropout = 0.
dropout = 0.,
channels = 3
):
super().__init__()
assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_size // patch_size) ** 2
patch_dim = 3 * patch_size ** 2
patch_dim = channels * patch_size ** 2
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size),
@@ -223,11 +224,12 @@ class CrossViT(nn.Module):
cross_attn_dim_head = 64,
depth = 3,
dropout = 0.1,
emb_dropout = 0.1
emb_dropout = 0.1,
channels = 3
):
super().__init__()
self.sm_image_embedder = ImageEmbedder(dim = sm_dim, image_size = image_size, patch_size = sm_patch_size, dropout = emb_dropout)
self.lg_image_embedder = ImageEmbedder(dim = lg_dim, image_size = image_size, patch_size = lg_patch_size, dropout = emb_dropout)
self.sm_image_embedder = ImageEmbedder(dim = sm_dim, channels= channels, image_size = image_size, patch_size = sm_patch_size, dropout = emb_dropout)
self.lg_image_embedder = ImageEmbedder(dim = lg_dim, channels = channels, image_size = image_size, patch_size = lg_patch_size, dropout = emb_dropout)
self.multi_scale_encoder = MultiScaleEncoder(
depth = depth,

View File

@@ -140,12 +140,13 @@ class CvT(nn.Module):
s3_heads = 6,
s3_depth = 10,
s3_mlp_mult = 4,
dropout = 0.
dropout = 0.,
channels = 3
):
super().__init__()
kwargs = dict(locals())
dim = 3
dim = channels
layers = []
for prefix in ('s1', 's2', 's3'):

View File

@@ -1,6 +1,8 @@
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn import Module
import torch.nn.functional as F
from vit_pytorch.vit import ViT
from vit_pytorch.t2t import T2TViT
from vit_pytorch.efficient import ViT as EfficientViT
@@ -12,6 +14,9 @@ from einops import rearrange, repeat
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
# classes
class DistillMixin:
@@ -20,12 +25,12 @@ class DistillMixin:
x = self.to_patch_embedding(img)
b, n, _ = x.shape
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
cls_tokens = repeat(self.cls_token, '1 n d -> b n d', b = b)
x = torch.cat((cls_tokens, x), dim = 1)
x += self.pos_embedding[:, :(n + 1)]
if distilling:
distill_tokens = repeat(distill_token, '() n d -> b n d', b = b)
distill_tokens = repeat(distill_token, '1 n d -> b n d', b = b)
x = torch.cat((x, distill_tokens), dim = 1)
x = self._attend(x)
@@ -97,7 +102,7 @@ class DistillableEfficientViT(DistillMixin, EfficientViT):
# knowledge distillation wrapper
class DistillWrapper(nn.Module):
class DistillWrapper(Module):
def __init__(
self,
*,
@@ -105,7 +110,8 @@ class DistillWrapper(nn.Module):
student,
temperature = 1.,
alpha = 0.5,
hard = False
hard = False,
mlp_layernorm = False
):
super().__init__()
assert (isinstance(student, (DistillableViT, DistillableT2TViT, DistillableEfficientViT))) , 'student must be a vision transformer'
@@ -122,14 +128,14 @@ class DistillWrapper(nn.Module):
self.distillation_token = nn.Parameter(torch.randn(1, 1, dim))
self.distill_mlp = nn.Sequential(
nn.LayerNorm(dim),
nn.LayerNorm(dim) if mlp_layernorm else nn.Identity(),
nn.Linear(dim, num_classes)
)
def forward(self, img, labels, temperature = None, alpha = None, **kwargs):
b, *_ = img.shape
alpha = alpha if exists(alpha) else self.alpha
T = temperature if exists(temperature) else self.temperature
alpha = default(alpha, self.alpha)
T = default(temperature, self.temperature)
with torch.no_grad():
teacher_logits = self.teacher(img)

View File

@@ -173,7 +173,7 @@ class Attention(nn.Module):
# split heads
q, k, v = map(lambda t: rearrange(t, 'b n (h d ) -> b h n d', h = h), (q, k, v))
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
# scale

View File

@@ -0,0 +1,340 @@
from functools import partial
import torch
from torch import nn, einsum
import torch.nn.functional as F
from torch.nn import Module, ModuleList, Sequential
from einops import rearrange, repeat, reduce, pack, unpack
from einops.layers.torch import Rearrange, Reduce
# helpers
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def pack_one(x, pattern):
return pack([x], pattern)
def unpack_one(x, ps, pattern):
return unpack(x, ps, pattern)[0]
def cast_tuple(val, length = 1):
return val if isinstance(val, tuple) else ((val,) * length)
# helper classes
def FeedForward(dim, mult = 4, dropout = 0.):
inner_dim = int(dim * mult)
return Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, inner_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
# MBConv
class SqueezeExcitation(Module):
def __init__(self, dim, shrinkage_rate = 0.25):
super().__init__()
hidden_dim = int(dim * shrinkage_rate)
self.gate = Sequential(
Reduce('b c h w -> b c', 'mean'),
nn.Linear(dim, hidden_dim, bias = False),
nn.SiLU(),
nn.Linear(hidden_dim, dim, bias = False),
nn.Sigmoid(),
Rearrange('b c -> b c 1 1')
)
def forward(self, x):
return x * self.gate(x)
class MBConvResidual(Module):
def __init__(self, fn, dropout = 0.):
super().__init__()
self.fn = fn
self.dropsample = Dropsample(dropout)
def forward(self, x):
out = self.fn(x)
out = self.dropsample(out)
return out + x
class Dropsample(Module):
def __init__(self, prob = 0):
super().__init__()
self.prob = prob
def forward(self, x):
device = x.device
if self.prob == 0. or (not self.training):
return x
keep_mask = torch.FloatTensor((x.shape[0], 1, 1, 1), device = device).uniform_() > self.prob
return x * keep_mask / (1 - self.prob)
def MBConv(
dim_in,
dim_out,
*,
downsample,
expansion_rate = 4,
shrinkage_rate = 0.25,
dropout = 0.
):
hidden_dim = int(expansion_rate * dim_out)
stride = 2 if downsample else 1
net = Sequential(
nn.Conv2d(dim_in, hidden_dim, 1),
nn.BatchNorm2d(hidden_dim),
nn.GELU(),
nn.Conv2d(hidden_dim, hidden_dim, 3, stride = stride, padding = 1, groups = hidden_dim),
nn.BatchNorm2d(hidden_dim),
nn.GELU(),
SqueezeExcitation(hidden_dim, shrinkage_rate = shrinkage_rate),
nn.Conv2d(hidden_dim, dim_out, 1),
nn.BatchNorm2d(dim_out)
)
if dim_in == dim_out and not downsample:
net = MBConvResidual(net, dropout = dropout)
return net
# attention related classes
class Attention(Module):
def __init__(
self,
dim,
dim_head = 32,
dropout = 0.,
window_size = 7,
num_registers = 1
):
super().__init__()
assert num_registers > 0
assert (dim % dim_head) == 0, 'dimension should be divisible by dimension per head'
self.heads = dim // dim_head
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.to_qkv = nn.Linear(dim, dim * 3, bias = False)
self.attend = nn.Sequential(
nn.Softmax(dim = -1),
nn.Dropout(dropout)
)
self.to_out = nn.Sequential(
nn.Linear(dim, dim, bias = False),
nn.Dropout(dropout)
)
# relative positional bias
num_rel_pos_bias = (2 * window_size - 1) ** 2
self.rel_pos_bias = nn.Embedding(num_rel_pos_bias + 1, self.heads)
pos = torch.arange(window_size)
grid = torch.stack(torch.meshgrid(pos, pos, indexing = 'ij'))
grid = rearrange(grid, 'c i j -> (i j) c')
rel_pos = rearrange(grid, 'i ... -> i 1 ...') - rearrange(grid, 'j ... -> 1 j ...')
rel_pos += window_size - 1
rel_pos_indices = (rel_pos * torch.tensor([2 * window_size - 1, 1])).sum(dim = -1)
rel_pos_indices = F.pad(rel_pos_indices, (num_registers, 0, num_registers, 0), value = num_rel_pos_bias)
self.register_buffer('rel_pos_indices', rel_pos_indices, persistent = False)
def forward(self, x):
device, h, bias_indices = x.device, self.heads, self.rel_pos_indices
x = self.norm(x)
# project for queries, keys, values
q, k, v = self.to_qkv(x).chunk(3, dim = -1)
# split heads
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
# scale
q = q * self.scale
# sim
sim = einsum('b h i d, b h j d -> b h i j', q, k)
# add positional bias
bias = self.rel_pos_bias(bias_indices)
sim = sim + rearrange(bias, 'i j h -> h i j')
# attention
attn = self.attend(sim)
# aggregate
out = einsum('b h i j, b h j d -> b h i d', attn, v)
# combine heads out
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class MaxViT(Module):
def __init__(
self,
*,
num_classes,
dim,
depth,
dim_head = 32,
dim_conv_stem = None,
window_size = 7,
mbconv_expansion_rate = 4,
mbconv_shrinkage_rate = 0.25,
dropout = 0.1,
channels = 3,
num_register_tokens = 4
):
super().__init__()
assert isinstance(depth, tuple), 'depth needs to be tuple if integers indicating number of transformer blocks at that stage'
assert num_register_tokens > 0
# convolutional stem
dim_conv_stem = default(dim_conv_stem, dim)
self.conv_stem = Sequential(
nn.Conv2d(channels, dim_conv_stem, 3, stride = 2, padding = 1),
nn.Conv2d(dim_conv_stem, dim_conv_stem, 3, padding = 1)
)
# variables
num_stages = len(depth)
dims = tuple(map(lambda i: (2 ** i) * dim, range(num_stages)))
dims = (dim_conv_stem, *dims)
dim_pairs = tuple(zip(dims[:-1], dims[1:]))
self.layers = nn.ModuleList([])
# window size
self.window_size = window_size
self.register_tokens = nn.ParameterList([])
# iterate through stages
for ind, ((layer_dim_in, layer_dim), layer_depth) in enumerate(zip(dim_pairs, depth)):
for stage_ind in range(layer_depth):
is_first = stage_ind == 0
stage_dim_in = layer_dim_in if is_first else layer_dim
conv = MBConv(
stage_dim_in,
layer_dim,
downsample = is_first,
expansion_rate = mbconv_expansion_rate,
shrinkage_rate = mbconv_shrinkage_rate
)
block_attn = Attention(dim = layer_dim, dim_head = dim_head, dropout = dropout, window_size = window_size, num_registers = num_register_tokens)
block_ff = FeedForward(dim = layer_dim, dropout = dropout)
grid_attn = Attention(dim = layer_dim, dim_head = dim_head, dropout = dropout, window_size = window_size, num_registers = num_register_tokens)
grid_ff = FeedForward(dim = layer_dim, dropout = dropout)
register_tokens = nn.Parameter(torch.randn(num_register_tokens, layer_dim))
self.layers.append(ModuleList([
conv,
ModuleList([block_attn, block_ff]),
ModuleList([grid_attn, grid_ff])
]))
self.register_tokens.append(register_tokens)
# mlp head out
self.mlp_head = nn.Sequential(
Reduce('b d h w -> b d', 'mean'),
nn.LayerNorm(dims[-1]),
nn.Linear(dims[-1], num_classes)
)
def forward(self, x):
b, w = x.shape[0], self.window_size
x = self.conv_stem(x)
for (conv, (block_attn, block_ff), (grid_attn, grid_ff)), register_tokens in zip(self.layers, self.register_tokens):
x = conv(x)
# block-like attention
x = rearrange(x, 'b d (x w1) (y w2) -> b x y w1 w2 d', w1 = w, w2 = w)
# prepare register tokens
r = repeat(register_tokens, 'n d -> b x y n d', b = b, x = x.shape[1],y = x.shape[2])
r, register_batch_ps = pack_one(r, '* n d')
x, window_ps = pack_one(x, 'b x y * d')
x, batch_ps = pack_one(x, '* n d')
x, register_ps = pack([r, x], 'b * d')
x = block_attn(x) + x
x = block_ff(x) + x
r, x = unpack(x, register_ps, 'b * d')
x = unpack_one(x, batch_ps, '* n d')
x = unpack_one(x, window_ps, 'b x y * d')
x = rearrange(x, 'b x y w1 w2 d -> b d (x w1) (y w2)')
r = unpack_one(r, register_batch_ps, '* n d')
# grid-like attention
x = rearrange(x, 'b d (w1 x) (w2 y) -> b x y w1 w2 d', w1 = w, w2 = w)
# prepare register tokens
r = reduce(r, 'b x y n d -> b n d', 'mean')
r = repeat(r, 'b n d -> b x y n d', x = x.shape[1], y = x.shape[2])
r, register_batch_ps = pack_one(r, '* n d')
x, window_ps = pack_one(x, 'b x y * d')
x, batch_ps = pack_one(x, '* n d')
x, register_ps = pack([r, x], 'b * d')
x = grid_attn(x) + x
r, x = unpack(x, register_ps, 'b * d')
x = grid_ff(x) + x
x = unpack_one(x, batch_ps, '* n d')
x = unpack_one(x, window_ps, 'b x y * d')
x = rearrange(x, 'b x y w1 w2 d -> b d (w1 x) (w2 y)')
return self.mlp_head(x)

View File

@@ -198,7 +198,7 @@ class NaViT(nn.Module):
self.calc_token_dropout = token_dropout_prob
elif isinstance(token_dropout_prob, (float, int)):
assert 0. < token_dropout_prob < 1.
assert 0. <= token_dropout_prob < 1.
token_dropout_prob = float(token_dropout_prob)
self.calc_token_dropout = lambda height, width: token_dropout_prob
@@ -249,7 +249,7 @@ class NaViT(nn.Module):
group_images = False,
group_max_seq_len = 2048
):
p, c, device, has_token_dropout = self.patch_size, self.channels, self.device, exists(self.calc_token_dropout)
p, c, device, has_token_dropout = self.patch_size, self.channels, self.device, exists(self.calc_token_dropout) and self.training
arange = partial(torch.arange, device = device)
pad_sequence = partial(orig_pad_sequence, batch_first = True)
@@ -260,7 +260,7 @@ class NaViT(nn.Module):
batched_images = group_images_by_max_seq_len(
batched_images,
patch_size = self.patch_size,
calc_token_dropout = self.calc_token_dropout,
calc_token_dropout = self.calc_token_dropout if self.training else None,
max_seq_len = group_max_seq_len
)
@@ -314,8 +314,8 @@ class NaViT(nn.Module):
# derive key padding mask
lengths = torch.tensor([seq.shape[-2] for seq in batched_sequences], device = device, dtype = torch.long)
max_length = arange(lengths.amax().item())
key_pad_mask = rearrange(lengths, 'b -> b 1') <= rearrange(max_length, 'n -> 1 n')
seq_arange = arange(lengths.amax().item())
key_pad_mask = rearrange(seq_arange, 'n -> 1 n') < rearrange(lengths, 'b -> b 1')
# derive attention mask, and combine with key padding mask from above

View File

@@ -3,12 +3,14 @@ from math import sqrt, pi, log
import torch
from torch import nn, einsum
import torch.nn.functional as F
from torch.cuda.amp import autocast
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
# rotary embeddings
@autocast(enabled = False)
def rotate_every_two(x):
x = rearrange(x, '... (d j) -> ... d j', j = 2)
x1, x2 = x.unbind(dim = -1)
@@ -22,6 +24,7 @@ class AxialRotaryEmbedding(nn.Module):
scales = torch.linspace(1., max_freq / 2, self.dim // 4)
self.register_buffer('scales', scales)
@autocast(enabled = False)
def forward(self, x):
device, dtype, n = x.device, x.dtype, int(sqrt(x.shape[-2]))

View File

@@ -0,0 +1,171 @@
from packaging import version
from collections import namedtuple
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn import Module, ModuleList
from einops import rearrange
from einops.layers.torch import Rearrange
# constants
Config = namedtuple('FlashAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient'])
# helpers
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def posemb_sincos_3d(patches, temperature = 10000, dtype = torch.float32):
_, f, h, w, dim, device, dtype = *patches.shape, patches.device, patches.dtype
z, y, x = torch.meshgrid(
torch.arange(f, device = device),
torch.arange(h, device = device),
torch.arange(w, device = device),
indexing = 'ij')
fourier_dim = dim // 6
omega = torch.arange(fourier_dim, device = device) / (fourier_dim - 1)
omega = 1. / (temperature ** omega)
z = z.flatten()[:, None] * omega[None, :]
y = y.flatten()[:, None] * omega[None, :]
x = x.flatten()[:, None] * omega[None, :]
pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos(), z.sin(), z.cos()), dim = 1)
pe = F.pad(pe, (0, dim - (fourier_dim * 6))) # pad if feature dimension not cleanly divisible by 6
return pe.type(dtype)
# main class
class Attend(Module):
def __init__(self, use_flash = False, config: Config = Config(True, True, True)):
super().__init__()
self.config = config
self.use_flash = use_flash
assert not (use_flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above'
def flash_attn(self, q, k, v):
# flash attention - https://arxiv.org/abs/2205.14135
with torch.backends.cuda.sdp_kernel(**self.config._asdict()):
out = F.scaled_dot_product_attention(q, k, v)
return out
def forward(self, q, k, v):
n, device, scale = q.shape[-2], q.device, q.shape[-1] ** -0.5
if self.use_flash:
return self.flash_attn(q, k, v)
# similarity
sim = einsum("b h i d, b j d -> b h i j", q, k) * scale
# attention
attn = sim.softmax(dim=-1)
# aggregate values
out = einsum("b h i j, b j d -> b h i d", attn, v)
return out
# classes
class FeedForward(Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, dim),
)
def forward(self, x):
return self.net(x)
class Attention(Module):
def __init__(self, dim, heads = 8, dim_head = 64, use_flash = True):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = Attend(use_flash = use_flash)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Linear(inner_dim, dim, bias = False)
def forward(self, x):
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
out = self.attend(q, k, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, use_flash):
super().__init__()
self.layers = ModuleList([])
for _ in range(depth):
self.layers.append(ModuleList([
Attention(dim, heads = heads, dim_head = dim_head, use_flash = use_flash),
FeedForward(dim, mlp_dim)
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return x
class SimpleViT(Module):
def __init__(self, *, image_size, image_patch_size, frames, frame_patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64, use_flash_attn = True):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(image_patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
assert frames % frame_patch_size == 0, 'Frames must be divisible by the frame patch size'
num_patches = (image_height // patch_height) * (image_width // patch_width) * (frames // frame_patch_size)
patch_dim = channels * patch_height * patch_width * frame_patch_size
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (f pf) (h p1) (w p2) -> b f h w (p1 p2 pf c)', p1 = patch_height, p2 = patch_width, pf = frame_patch_size),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim),
)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, use_flash_attn)
self.to_latent = nn.Identity()
self.linear_head = nn.Linear(dim, num_classes)
def forward(self, video):
*_, h, w, dtype = *video.shape, video.dtype
x = self.to_patch_embedding(video)
pe = posemb_sincos_3d(x)
x = rearrange(x, 'b ... d -> b (...) d') + pe
x = self.transformer(x)
x = x.mean(dim = 1)
x = self.to_latent(x)
return self.linear_head(x)

View File

@@ -0,0 +1,162 @@
import torch
from torch.fft import fft2
from torch import nn
from einops import rearrange, reduce, pack, unpack
from einops.layers.torch import Rearrange
# helpers
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def posemb_sincos_2d(h, w, dim, temperature: int = 10000, dtype = torch.float32):
y, x = torch.meshgrid(torch.arange(h), torch.arange(w), indexing="ij")
assert (dim % 4) == 0, "feature dimension must be multiple of 4 for sincos emb"
omega = torch.arange(dim // 4) / (dim // 4 - 1)
omega = 1.0 / (temperature ** omega)
y = y.flatten()[:, None] * omega[None, :]
x = x.flatten()[:, None] * omega[None, :]
pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim=1)
return pe.type(dtype)
# classes
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, dim),
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Linear(inner_dim, dim, bias = False)
def forward(self, x):
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim, heads = heads, dim_head = dim_head),
FeedForward(dim, mlp_dim)
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return self.norm(x)
class SimpleViT(nn.Module):
def __init__(self, *, image_size, patch_size, freq_patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
freq_patch_height, freq_patch_width = pair(freq_patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
assert image_height % freq_patch_height == 0 and image_width % freq_patch_width == 0, 'Image dimensions must be divisible by the freq patch size.'
patch_dim = channels * patch_height * patch_width
freq_patch_dim = channels * 2 * freq_patch_height * freq_patch_width
self.to_patch_embedding = nn.Sequential(
Rearrange("b c (h p1) (w p2) -> b (h w) (p1 p2 c)", p1 = patch_height, p2 = patch_width),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim),
)
self.to_freq_embedding = nn.Sequential(
Rearrange("b c (h p1) (w p2) ri -> b (h w) (p1 p2 ri c)", p1 = freq_patch_height, p2 = freq_patch_width),
nn.LayerNorm(freq_patch_dim),
nn.Linear(freq_patch_dim, dim),
nn.LayerNorm(dim)
)
self.pos_embedding = posemb_sincos_2d(
h = image_height // patch_height,
w = image_width // patch_width,
dim = dim,
)
self.freq_pos_embedding = posemb_sincos_2d(
h = image_height // freq_patch_height,
w = image_width // freq_patch_width,
dim = dim
)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim)
self.pool = "mean"
self.to_latent = nn.Identity()
self.linear_head = nn.Linear(dim, num_classes)
def forward(self, img):
device, dtype = img.device, img.dtype
x = self.to_patch_embedding(img)
freqs = torch.view_as_real(fft2(img))
f = self.to_freq_embedding(freqs)
x += self.pos_embedding.to(device, dtype = dtype)
f += self.freq_pos_embedding.to(device, dtype = dtype)
x, ps = pack((f, x), 'b * d')
x = self.transformer(x)
_, x = unpack(x, ps, 'b * d')
x = reduce(x, 'b n d -> b d', 'mean')
x = self.to_latent(x)
return self.linear_head(x)
if __name__ == '__main__':
vit = SimpleViT(
num_classes = 1000,
image_size = 256,
patch_size = 8,
freq_patch_size = 8,
dim = 1024,
depth = 1,
heads = 8,
mlp_dim = 2048,
)
images = torch.randn(8, 3, 256, 256)
logits = vit(images)

View File

@@ -0,0 +1,134 @@
"""
Vision Transformers Need Registers
https://arxiv.org/abs/2309.16588
"""
import torch
from torch import nn
from einops import rearrange, repeat, pack, unpack
from einops.layers.torch import Rearrange
# helpers
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def posemb_sincos_2d(h, w, dim, temperature: int = 10000, dtype = torch.float32):
y, x = torch.meshgrid(torch.arange(h), torch.arange(w), indexing="ij")
assert (dim % 4) == 0, "feature dimension must be multiple of 4 for sincos emb"
omega = torch.arange(dim // 4) / (dim // 4 - 1)
omega = 1.0 / (temperature ** omega)
y = y.flatten()[:, None] * omega[None, :]
x = x.flatten()[:, None] * omega[None, :]
pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim=1)
return pe.type(dtype)
# classes
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, dim),
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Linear(inner_dim, dim, bias = False)
def forward(self, x):
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim, heads = heads, dim_head = dim_head),
FeedForward(dim, mlp_dim)
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return self.norm(x)
class SimpleViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, num_register_tokens = 4, channels = 3, dim_head = 64):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
patch_dim = channels * patch_height * patch_width
self.to_patch_embedding = nn.Sequential(
Rearrange("b c (h p1) (w p2) -> b (h w) (p1 p2 c)", p1 = patch_height, p2 = patch_width),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim),
)
self.register_tokens = nn.Parameter(torch.randn(num_register_tokens, dim))
self.pos_embedding = posemb_sincos_2d(
h = image_height // patch_height,
w = image_width // patch_width,
dim = dim,
)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim)
self.pool = "mean"
self.to_latent = nn.Identity()
self.linear_head = nn.Linear(dim, num_classes)
def forward(self, img):
batch, device = img.shape[0], img.device
x = self.to_patch_embedding(img)
x += self.pos_embedding.to(device, dtype=x.dtype)
r = repeat(self.register_tokens, 'n d -> b n d', b = batch)
x, ps = pack([x, r], 'b * d')
x = self.transformer(x)
x, _ = unpack(x, ps, 'b * d')
x = x.mean(dim = 1)
x = self.to_latent(x)
return self.linear_head(x)

View File

@@ -61,10 +61,7 @@ class T2TViT(nn.Module):
self.pool = pool
self.to_latent = nn.Identity()
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
self.mlp_head = nn.Linear(dim, num_classes)
def forward(self, img):
x = self.to_patch_embedding(img)

View File

@@ -10,7 +10,7 @@ class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Layernorm(dim),
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),

283
vit_pytorch/xcit.py Normal file
View File

@@ -0,0 +1,283 @@
from random import randrange
import torch
from torch import nn, einsum
from torch.nn import Module, ModuleList
import torch.nn.functional as F
from einops import rearrange, repeat, pack, unpack
from einops.layers.torch import Rearrange
# helpers
def exists(val):
return val is not None
def pack_one(t, pattern):
return pack([t], pattern)
def unpack_one(t, ps, pattern):
return unpack(t, ps, pattern)[0]
def l2norm(t):
return F.normalize(t, dim = -1, p = 2)
def dropout_layers(layers, dropout):
if dropout == 0:
return layers
num_layers = len(layers)
to_drop = torch.zeros(num_layers).uniform_(0., 1.) < dropout
# make sure at least one layer makes it
if all(to_drop):
rand_index = randrange(num_layers)
to_drop[rand_index] = False
layers = [layer for (layer, drop) in zip(layers, to_drop) if not drop]
return layers
# classes
class LayerScale(Module):
def __init__(self, dim, fn, depth):
super().__init__()
if depth <= 18:
init_eps = 0.1
elif 18 > depth <= 24:
init_eps = 1e-5
else:
init_eps = 1e-6
self.fn = fn
self.scale = nn.Parameter(torch.full((dim,), init_eps))
def forward(self, x, **kwargs):
return self.fn(x, **kwargs) * self.scale
class FeedForward(Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias = False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x, context = None):
h = self.heads
x = self.norm(x)
context = x if not exists(context) else torch.cat((x, context), dim = 1)
qkv = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1))
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)
sim = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
attn = self.attend(sim)
attn = self.dropout(attn)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class XCAttention(Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.norm = nn.LayerNorm(dim)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.temperature = nn.Parameter(torch.ones(heads, 1, 1))
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
h = self.heads
x, ps = pack_one(x, 'b * d')
x = self.norm(x)
q, k, v = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h d n', h = h), (q, k, v))
q, k = map(l2norm, (q, k))
sim = einsum('b h i n, b h j n -> b h i j', q, k) * self.temperature.exp()
attn = self.attend(sim)
attn = self.dropout(attn)
out = einsum('b h i j, b h j n -> b h i n', attn, v)
out = rearrange(out, 'b h d n -> b n (h d)')
out = unpack_one(out, ps, 'b * d')
return self.to_out(out)
class LocalPatchInteraction(Module):
def __init__(self, dim, kernel_size = 3):
super().__init__()
assert (kernel_size % 2) == 1
padding = kernel_size // 2
self.net = nn.Sequential(
nn.LayerNorm(dim),
Rearrange('b h w c -> b c h w'),
nn.Conv2d(dim, dim, kernel_size, padding = padding, groups = dim),
nn.BatchNorm2d(dim),
nn.GELU(),
nn.Conv2d(dim, dim, kernel_size, padding = padding, groups = dim),
Rearrange('b c h w -> b h w c'),
)
def forward(self, x):
return self.net(x)
class Transformer(Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0., layer_dropout = 0.):
super().__init__()
self.layers = ModuleList([])
self.layer_dropout = layer_dropout
for ind in range(depth):
layer = ind + 1
self.layers.append(ModuleList([
LayerScale(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout), depth = layer),
LayerScale(dim, FeedForward(dim, mlp_dim, dropout = dropout), depth = layer)
]))
def forward(self, x, context = None):
layers = dropout_layers(self.layers, dropout = self.layer_dropout)
for attn, ff in layers:
x = attn(x, context = context) + x
x = ff(x) + x
return x
class XCATransformer(Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, local_patch_kernel_size = 3, dropout = 0., layer_dropout = 0.):
super().__init__()
self.layers = ModuleList([])
self.layer_dropout = layer_dropout
for ind in range(depth):
layer = ind + 1
self.layers.append(ModuleList([
LayerScale(dim, XCAttention(dim, heads = heads, dim_head = dim_head, dropout = dropout), depth = layer),
LayerScale(dim, LocalPatchInteraction(dim, local_patch_kernel_size), depth = layer),
LayerScale(dim, FeedForward(dim, mlp_dim, dropout = dropout), depth = layer)
]))
def forward(self, x):
layers = dropout_layers(self.layers, dropout = self.layer_dropout)
for cross_covariance_attn, local_patch_interaction, ff in layers:
x = cross_covariance_attn(x) + x
x = local_patch_interaction(x) + x
x = ff(x) + x
return x
class XCiT(Module):
def __init__(
self,
*,
image_size,
patch_size,
num_classes,
dim,
depth,
cls_depth,
heads,
mlp_dim,
dim_head = 64,
dropout = 0.,
emb_dropout = 0.,
local_patch_kernel_size = 3,
layer_dropout = 0.
):
super().__init__()
assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_size // patch_size) ** 2
patch_dim = 3 * patch_size ** 2
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b h w (p1 p2 c)', p1 = patch_size, p2 = patch_size),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim)
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches, dim))
self.cls_token = nn.Parameter(torch.randn(dim))
self.dropout = nn.Dropout(emb_dropout)
self.xcit_transformer = XCATransformer(dim, depth, heads, dim_head, mlp_dim, local_patch_kernel_size, dropout, layer_dropout)
self.final_norm = nn.LayerNorm(dim)
self.cls_transformer = Transformer(dim, cls_depth, heads, dim_head, mlp_dim, dropout, layer_dropout)
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def forward(self, img):
x = self.to_patch_embedding(img)
x, ps = pack_one(x, 'b * d')
b, n, _ = x.shape
x += self.pos_embedding[:, :n]
x = unpack_one(x, ps, 'b * d')
x = self.dropout(x)
x = self.xcit_transformer(x)
x = self.final_norm(x)
cls_tokens = repeat(self.cls_token, 'd -> b 1 d', b = b)
x = rearrange(x, 'b ... d -> b (...) d')
cls_tokens = self.cls_transformer(cls_tokens, context = x)
return self.mlp_head(cls_tokens[:, 0])