Compare commits

..

17 Commits
1.6.0 ... 1.7.2

Author SHA1 Message Date
Phil Wang
ec6c48b8ff norm not needed when reusing attention in lookvit 2024-07-19 10:00:03 -07:00
Phil Wang
547bf94d07 1.7.1 2024-07-19 09:49:44 -07:00
Phil Wang
bd72b58355 add lookup vit, cite, document later 2024-07-19 09:48:58 -07:00
lucidrains
e3256d77cd fix t2t vit having two layernorms, and make final layernorm in distillation wrapper configurable, default to False for vit 2024-06-11 15:12:53 -07:00
lucidrains
90be7233a3 rotary needs to be done with full precision to be safe 2024-05-11 08:04:32 -07:00
Phil Wang
bca88e9039 address https://github.com/lucidrains/vit-pytorch/issues/300 2024-05-02 08:46:39 -07:00
Phil Wang
96f66d2754 address https://github.com/lucidrains/vit-pytorch/issues/306 2024-04-18 09:44:29 -07:00
Phil Wang
12249dcc5f address https://github.com/lucidrains/vit-pytorch/issues/304 2024-04-17 09:40:03 -07:00
SOUMYADIP MAL
8b8da8dede Update setup.py (#303) 2024-04-17 08:21:30 -07:00
lucidrains
5578ac472f address https://github.com/lucidrains/vit-pytorch/issues/292 2023-12-23 08:11:39 -08:00
lucidrains
d446a41243 share an idea that should be tried if it has not been 2023-11-14 16:55:36 -08:00
lucidrains
0ad09c4cbc allow channels to be customizable for cvt 2023-10-25 14:47:58 -07:00
Phil Wang
92b69321f4 1.6.2 2023-10-24 12:47:38 -07:00
Artem Lukin
fb4ac25174 Fix typo in LayerNorm (#285)
Co-authored-by: Artem Lukin <artyom.lukin98@gmail.com>
2023-10-24 12:47:21 -07:00
lucidrains
53fe345e85 no longer needed with einops 0.7 2023-10-19 18:16:46 -07:00
Phil Wang
efb94608ea readme 2023-10-19 09:38:35 -07:00
lucidrains
51310d1d07 add xcit diagram 2023-10-13 09:18:12 -07:00
14 changed files with 657 additions and 35 deletions

View File

@@ -777,7 +777,7 @@ pred = mbvit_xs(img) # (1, 1000)
<img src="./images/xcit.png" width="400px"></img>
This <a href="https://arxiv.org/abs/2106.09681">paper</a> introduces the cross correlation attention (abbreviated XCA). One can think of it as doing attention across the features dimension rather than the spatial one (another perspective would be a dynamic 1x1 convolution, the kernel being attention map defined by spatial correlations).
This <a href="https://arxiv.org/abs/2106.09681">paper</a> introduces the cross covariance attention (abbreviated XCA). One can think of it as doing attention across the features dimension rather than the spatial one (another perspective would be a dynamic 1x1 convolution, the kernel being attention map defined by spatial correlations).
Technically, this amounts to simply transposing the query, key, values before executing cosine similarity attention with learned temperature.
@@ -2072,4 +2072,20 @@ Coming from computer vision and new to transformers? Here are some resources tha
}
```
```bibtex
@inproceedings{Koner2024LookupViTCV,
title = {LookupViT: Compressing visual information to a limited number of tokens},
author = {Rajat Koner and Gagan Jain and Prateek Jain and Volker Tresp and Sujoy Paul},
year = {2024},
url = {https://api.semanticscholar.org/CorpusID:271244592}
}
```
```bibtex
@misc{Rubin2024,
author = {Ohad Rubin},
url = {https://medium.com/@ohadrubin/exploring-weight-decay-in-layer-normalization-challenges-and-a-reparameterization-solution-ad4d12c24950}
}
```
*I visualise a time when we will be to robots what dogs are to humans, and Im rooting for the machines.* — Claude Shannon

BIN
images/xcit.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 814 KiB

View File

@@ -1,11 +1,15 @@
from setuptools import setup, find_packages
with open('README.md') as f:
long_description = f.read()
setup(
name = 'vit-pytorch',
packages = find_packages(exclude=['examples']),
version = '1.6.0',
version = '1.7.2',
license='MIT',
description = 'Vision Transformer (ViT) - Pytorch',
long_description=long_description,
long_description_content_type = 'text/markdown',
author = 'Phil Wang',
author_email = 'lucidrains@gmail.com',

View File

@@ -1,10 +1,3 @@
import torch
from packaging import version
if version.parse(torch.__version__) >= version.parse('2.0.0'):
from einops._torch_specific import allow_ops_in_compiled_graph
allow_ops_in_compiled_graph()
from vit_pytorch.vit import ViT
from vit_pytorch.simple_vit import SimpleViT

View File

@@ -170,12 +170,13 @@ class ImageEmbedder(nn.Module):
dim,
image_size,
patch_size,
dropout = 0.
dropout = 0.,
channels = 3
):
super().__init__()
assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_size // patch_size) ** 2
patch_dim = 3 * patch_size ** 2
patch_dim = channels * patch_size ** 2
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size),
@@ -223,11 +224,12 @@ class CrossViT(nn.Module):
cross_attn_dim_head = 64,
depth = 3,
dropout = 0.1,
emb_dropout = 0.1
emb_dropout = 0.1,
channels = 3
):
super().__init__()
self.sm_image_embedder = ImageEmbedder(dim = sm_dim, image_size = image_size, patch_size = sm_patch_size, dropout = emb_dropout)
self.lg_image_embedder = ImageEmbedder(dim = lg_dim, image_size = image_size, patch_size = lg_patch_size, dropout = emb_dropout)
self.sm_image_embedder = ImageEmbedder(dim = sm_dim, channels= channels, image_size = image_size, patch_size = sm_patch_size, dropout = emb_dropout)
self.lg_image_embedder = ImageEmbedder(dim = lg_dim, channels = channels, image_size = image_size, patch_size = lg_patch_size, dropout = emb_dropout)
self.multi_scale_encoder = MultiScaleEncoder(
depth = depth,

View File

@@ -140,12 +140,13 @@ class CvT(nn.Module):
s3_heads = 6,
s3_depth = 10,
s3_mlp_mult = 4,
dropout = 0.
dropout = 0.,
channels = 3
):
super().__init__()
kwargs = dict(locals())
dim = 3
dim = channels
layers = []
for prefix in ('s1', 's2', 's3'):

View File

@@ -1,6 +1,8 @@
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn import Module
import torch.nn.functional as F
from vit_pytorch.vit import ViT
from vit_pytorch.t2t import T2TViT
from vit_pytorch.efficient import ViT as EfficientViT
@@ -12,6 +14,9 @@ from einops import rearrange, repeat
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
# classes
class DistillMixin:
@@ -20,12 +25,12 @@ class DistillMixin:
x = self.to_patch_embedding(img)
b, n, _ = x.shape
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
cls_tokens = repeat(self.cls_token, '1 n d -> b n d', b = b)
x = torch.cat((cls_tokens, x), dim = 1)
x += self.pos_embedding[:, :(n + 1)]
if distilling:
distill_tokens = repeat(distill_token, '() n d -> b n d', b = b)
distill_tokens = repeat(distill_token, '1 n d -> b n d', b = b)
x = torch.cat((x, distill_tokens), dim = 1)
x = self._attend(x)
@@ -97,7 +102,7 @@ class DistillableEfficientViT(DistillMixin, EfficientViT):
# knowledge distillation wrapper
class DistillWrapper(nn.Module):
class DistillWrapper(Module):
def __init__(
self,
*,
@@ -105,7 +110,8 @@ class DistillWrapper(nn.Module):
student,
temperature = 1.,
alpha = 0.5,
hard = False
hard = False,
mlp_layernorm = False
):
super().__init__()
assert (isinstance(student, (DistillableViT, DistillableT2TViT, DistillableEfficientViT))) , 'student must be a vision transformer'
@@ -122,14 +128,14 @@ class DistillWrapper(nn.Module):
self.distillation_token = nn.Parameter(torch.randn(1, 1, dim))
self.distill_mlp = nn.Sequential(
nn.LayerNorm(dim),
nn.LayerNorm(dim) if mlp_layernorm else nn.Identity(),
nn.Linear(dim, num_classes)
)
def forward(self, img, labels, temperature = None, alpha = None, **kwargs):
b, *_ = img.shape
alpha = alpha if exists(alpha) else self.alpha
T = temperature if exists(temperature) else self.temperature
alpha = default(alpha, self.alpha)
T = default(temperature, self.temperature)
with torch.no_grad():
teacher_logits = self.teacher(img)

267
vit_pytorch/look_vit.py Normal file
View File

@@ -0,0 +1,267 @@
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn import Module, ModuleList
from einops import einsum, rearrange, repeat, reduce
from einops.layers.torch import Rearrange
# helpers
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def divisible_by(num, den):
return (num % den) == 0
# simple vit sinusoidal pos emb
def posemb_sincos_2d(t, temperature = 10000):
h, w, d, device = *t.shape[1:], t.device
y, x = torch.meshgrid(torch.arange(h, device = device), torch.arange(w, device = device), indexing = 'ij')
assert (d % 4) == 0, "feature dimension must be multiple of 4 for sincos emb"
omega = torch.arange(d // 4, device = device) / (d // 4 - 1)
omega = temperature ** -omega
y = y.flatten()[:, None] * omega[None, :]
x = x.flatten()[:, None] * omega[None, :]
pos = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim = 1)
return pos.float()
# bias-less layernorm with unit offset trick (discovered by Ohad Rubin)
class LayerNorm(Module):
def __init__(self, dim):
super().__init__()
self.ln = nn.LayerNorm(dim, elementwise_affine = False)
self.gamma = nn.Parameter(torch.zeros(dim))
def forward(self, x):
normed = self.ln(x)
return normed * (self.gamma + 1)
# mlp
def MLP(dim, factor = 4, dropout = 0.):
hidden_dim = int(dim * factor)
return nn.Sequential(
LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
# attention
class Attention(Module):
def __init__(
self,
dim,
heads = 8,
dim_head = 64,
dropout = 0.,
reuse_attention = False
):
super().__init__()
inner_dim = dim_head * heads
self.scale = dim_head ** -0.5
self.heads = heads
self.reuse_attention = reuse_attention
self.split_heads = Rearrange('b n (h d) -> b h n d', h = heads)
self.norm = LayerNorm(dim) if not reuse_attention else nn.Identity()
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_q = nn.Linear(dim, inner_dim, bias = False) if not reuse_attention else None
self.to_k = nn.Linear(dim, inner_dim, bias = False) if not reuse_attention else None
self.to_v = nn.Linear(dim, inner_dim, bias = False)
self.to_out = nn.Sequential(
Rearrange('b h n d -> b n (h d)'),
nn.Linear(inner_dim, dim, bias = False),
nn.Dropout(dropout)
)
def forward(
self,
x,
context = None,
return_attn = False,
attn = None
):
x = self.norm(x)
context = default(context, x)
v = self.to_v(context)
v = self.split_heads(v)
if not self.reuse_attention:
qk = (self.to_q(x), self.to_k(context))
q, k = tuple(self.split_heads(t) for t in qk)
q = q * self.scale
sim = einsum(q, k, 'b h i d, b h j d -> b h i j')
attn = self.attend(sim)
attn = self.dropout(attn)
else:
assert exists(attn), 'attention matrix must be passed in for reusing previous attention'
out = einsum(attn, v, 'b h i j, b h j d -> b h i d')
out = self.to_out(out)
if not return_attn:
return out
return out, attn
# LookViT
class LookViT(Module):
def __init__(
self,
*,
dim,
image_size,
num_classes,
depth = 3,
patch_size = 16,
heads = 8,
mlp_factor = 4,
dim_head = 64,
highres_patch_size = 12,
highres_mlp_factor = 4,
cross_attn_heads = 8,
cross_attn_dim_head = 64,
patch_conv_kernel_size = 7,
dropout = 0.1,
channels = 3
):
super().__init__()
assert divisible_by(image_size, highres_patch_size)
assert divisible_by(image_size, patch_size)
assert patch_size > highres_patch_size, 'patch size of the main vision transformer should be smaller than the highres patch sizes (that does the `lookup`)'
assert not divisible_by(patch_conv_kernel_size, 2)
self.dim = dim
self.image_size = image_size
self.patch_size = patch_size
kernel_size = patch_conv_kernel_size
patch_dim = (highres_patch_size * highres_patch_size) * channels
self.to_patches = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (p1 p2 c) h w', p1 = highres_patch_size, p2 = highres_patch_size),
nn.Conv2d(patch_dim, dim, kernel_size, padding = kernel_size // 2),
Rearrange('b c h w -> b h w c'),
LayerNorm(dim),
)
# absolute positions
num_patches = (image_size // highres_patch_size) ** 2
self.pos_embedding = nn.Parameter(torch.randn(num_patches, dim))
# lookvit blocks
layers = ModuleList([])
for _ in range(depth):
layers.append(ModuleList([
Attention(dim = dim, dim_head = dim_head, heads = heads, dropout = dropout),
MLP(dim = dim, factor = mlp_factor, dropout = dropout),
Attention(dim = dim, dim_head = cross_attn_dim_head, heads = cross_attn_heads, dropout = dropout),
Attention(dim = dim, dim_head = cross_attn_dim_head, heads = cross_attn_heads, dropout = dropout, reuse_attention = True),
LayerNorm(dim),
MLP(dim = dim, factor = highres_mlp_factor, dropout = dropout)
]))
self.layers = layers
self.norm = LayerNorm(dim)
self.highres_norm = LayerNorm(dim)
self.to_logits = nn.Linear(dim, num_classes, bias = False)
def forward(self, img):
assert img.shape[-2:] == (self.image_size, self.image_size)
# to patch tokens and positions
highres_tokens = self.to_patches(img)
size = highres_tokens.shape[-2]
pos_emb = posemb_sincos_2d(highres_tokens)
highres_tokens = highres_tokens + rearrange(pos_emb, '(h w) d -> h w d', h = size)
tokens = F.interpolate(
rearrange(highres_tokens, 'b h w d -> b d h w'),
img.shape[-1] // self.patch_size,
mode = 'bilinear'
)
tokens = rearrange(tokens, 'b c h w -> b (h w) c')
highres_tokens = rearrange(highres_tokens, 'b h w c -> b (h w) c')
# attention and feedforwards
for attn, mlp, lookup_cross_attn, highres_attn, highres_norm, highres_mlp in self.layers:
# main tokens cross attends (lookup) on the high res tokens
lookup_out, lookup_attn = lookup_cross_attn(tokens, highres_tokens, return_attn = True) # return attention as they reuse the attention matrix
tokens = lookup_out + tokens
tokens = attn(tokens) + tokens
tokens = mlp(tokens) + tokens
# attention-reuse
lookup_attn = rearrange(lookup_attn, 'b h i j -> b h j i') # transpose for reverse cross attention
highres_tokens = highres_attn(highres_tokens, tokens, attn = lookup_attn) + highres_tokens
highres_tokens = highres_norm(highres_tokens)
highres_tokens = highres_mlp(highres_tokens) + highres_tokens
# to logits
tokens = self.norm(tokens)
highres_tokens = self.highres_norm(highres_tokens)
tokens = reduce(tokens, 'b n d -> b d', 'mean')
highres_tokens = reduce(highres_tokens, 'b n d -> b d', 'mean')
return self.to_logits(tokens + highres_tokens)
# main
if __name__ == '__main__':
v = LookViT(
image_size = 256,
num_classes = 1000,
dim = 512,
depth = 2,
heads = 8,
dim_head = 64,
patch_size = 32,
highres_patch_size = 8,
highres_mlp_factor = 2,
cross_attn_heads = 8,
cross_attn_dim_head = 64,
dropout = 0.1
).cuda()
img = torch.randn(2, 3, 256, 256).cuda()
pred = v(img)
assert pred.shape == (2, 1000)

View File

@@ -198,7 +198,7 @@ class NaViT(nn.Module):
self.calc_token_dropout = token_dropout_prob
elif isinstance(token_dropout_prob, (float, int)):
assert 0. < token_dropout_prob < 1.
assert 0. <= token_dropout_prob < 1.
token_dropout_prob = float(token_dropout_prob)
self.calc_token_dropout = lambda height, width: token_dropout_prob
@@ -249,7 +249,7 @@ class NaViT(nn.Module):
group_images = False,
group_max_seq_len = 2048
):
p, c, device, has_token_dropout = self.patch_size, self.channels, self.device, exists(self.calc_token_dropout)
p, c, device, has_token_dropout = self.patch_size, self.channels, self.device, exists(self.calc_token_dropout) and self.training
arange = partial(torch.arange, device = device)
pad_sequence = partial(orig_pad_sequence, batch_first = True)
@@ -260,7 +260,7 @@ class NaViT(nn.Module):
batched_images = group_images_by_max_seq_len(
batched_images,
patch_size = self.patch_size,
calc_token_dropout = self.calc_token_dropout,
calc_token_dropout = self.calc_token_dropout if self.training else None,
max_seq_len = group_max_seq_len
)
@@ -314,8 +314,8 @@ class NaViT(nn.Module):
# derive key padding mask
lengths = torch.tensor([seq.shape[-2] for seq in batched_sequences], device = device, dtype = torch.long)
max_length = arange(lengths.amax().item())
key_pad_mask = rearrange(lengths, 'b -> b 1') <= rearrange(max_length, 'n -> 1 n')
seq_arange = arange(lengths.amax().item())
key_pad_mask = rearrange(seq_arange, 'n -> 1 n') < rearrange(lengths, 'b -> b 1')
# derive attention mask, and combine with key padding mask from above

View File

@@ -3,12 +3,14 @@ from math import sqrt, pi, log
import torch
from torch import nn, einsum
import torch.nn.functional as F
from torch.cuda.amp import autocast
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
# rotary embeddings
@autocast(enabled = False)
def rotate_every_two(x):
x = rearrange(x, '... (d j) -> ... d j', j = 2)
x1, x2 = x.unbind(dim = -1)
@@ -22,6 +24,7 @@ class AxialRotaryEmbedding(nn.Module):
scales = torch.linspace(1., max_freq / 2, self.dim // 4)
self.register_buffer('scales', scales)
@autocast(enabled = False)
def forward(self, x):
device, dtype, n = x.device, x.dtype, int(sqrt(x.shape[-2]))

View File

@@ -0,0 +1,171 @@
from packaging import version
from collections import namedtuple
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn import Module, ModuleList
from einops import rearrange
from einops.layers.torch import Rearrange
# constants
Config = namedtuple('FlashAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient'])
# helpers
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def posemb_sincos_3d(patches, temperature = 10000, dtype = torch.float32):
_, f, h, w, dim, device, dtype = *patches.shape, patches.device, patches.dtype
z, y, x = torch.meshgrid(
torch.arange(f, device = device),
torch.arange(h, device = device),
torch.arange(w, device = device),
indexing = 'ij')
fourier_dim = dim // 6
omega = torch.arange(fourier_dim, device = device) / (fourier_dim - 1)
omega = 1. / (temperature ** omega)
z = z.flatten()[:, None] * omega[None, :]
y = y.flatten()[:, None] * omega[None, :]
x = x.flatten()[:, None] * omega[None, :]
pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos(), z.sin(), z.cos()), dim = 1)
pe = F.pad(pe, (0, dim - (fourier_dim * 6))) # pad if feature dimension not cleanly divisible by 6
return pe.type(dtype)
# main class
class Attend(Module):
def __init__(self, use_flash = False, config: Config = Config(True, True, True)):
super().__init__()
self.config = config
self.use_flash = use_flash
assert not (use_flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above'
def flash_attn(self, q, k, v):
# flash attention - https://arxiv.org/abs/2205.14135
with torch.backends.cuda.sdp_kernel(**self.config._asdict()):
out = F.scaled_dot_product_attention(q, k, v)
return out
def forward(self, q, k, v):
n, device, scale = q.shape[-2], q.device, q.shape[-1] ** -0.5
if self.use_flash:
return self.flash_attn(q, k, v)
# similarity
sim = einsum("b h i d, b j d -> b h i j", q, k) * scale
# attention
attn = sim.softmax(dim=-1)
# aggregate values
out = einsum("b h i j, b j d -> b h i d", attn, v)
return out
# classes
class FeedForward(Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, dim),
)
def forward(self, x):
return self.net(x)
class Attention(Module):
def __init__(self, dim, heads = 8, dim_head = 64, use_flash = True):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = Attend(use_flash = use_flash)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Linear(inner_dim, dim, bias = False)
def forward(self, x):
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
out = self.attend(q, k, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, use_flash):
super().__init__()
self.layers = ModuleList([])
for _ in range(depth):
self.layers.append(ModuleList([
Attention(dim, heads = heads, dim_head = dim_head, use_flash = use_flash),
FeedForward(dim, mlp_dim)
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return x
class SimpleViT(Module):
def __init__(self, *, image_size, image_patch_size, frames, frame_patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64, use_flash_attn = True):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(image_patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
assert frames % frame_patch_size == 0, 'Frames must be divisible by the frame patch size'
num_patches = (image_height // patch_height) * (image_width // patch_width) * (frames // frame_patch_size)
patch_dim = channels * patch_height * patch_width * frame_patch_size
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (f pf) (h p1) (w p2) -> b f h w (p1 p2 pf c)', p1 = patch_height, p2 = patch_width, pf = frame_patch_size),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim),
)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, use_flash_attn)
self.to_latent = nn.Identity()
self.linear_head = nn.Linear(dim, num_classes)
def forward(self, video):
*_, h, w, dtype = *video.shape, video.dtype
x = self.to_patch_embedding(video)
pe = posemb_sincos_3d(x)
x = rearrange(x, 'b ... d -> b (...) d') + pe
x = self.transformer(x)
x = x.mean(dim = 1)
x = self.to_latent(x)
return self.linear_head(x)

View File

@@ -0,0 +1,162 @@
import torch
from torch.fft import fft2
from torch import nn
from einops import rearrange, reduce, pack, unpack
from einops.layers.torch import Rearrange
# helpers
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def posemb_sincos_2d(h, w, dim, temperature: int = 10000, dtype = torch.float32):
y, x = torch.meshgrid(torch.arange(h), torch.arange(w), indexing="ij")
assert (dim % 4) == 0, "feature dimension must be multiple of 4 for sincos emb"
omega = torch.arange(dim // 4) / (dim // 4 - 1)
omega = 1.0 / (temperature ** omega)
y = y.flatten()[:, None] * omega[None, :]
x = x.flatten()[:, None] * omega[None, :]
pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim=1)
return pe.type(dtype)
# classes
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, dim),
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Linear(inner_dim, dim, bias = False)
def forward(self, x):
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim, heads = heads, dim_head = dim_head),
FeedForward(dim, mlp_dim)
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return self.norm(x)
class SimpleViT(nn.Module):
def __init__(self, *, image_size, patch_size, freq_patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
freq_patch_height, freq_patch_width = pair(freq_patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
assert image_height % freq_patch_height == 0 and image_width % freq_patch_width == 0, 'Image dimensions must be divisible by the freq patch size.'
patch_dim = channels * patch_height * patch_width
freq_patch_dim = channels * 2 * freq_patch_height * freq_patch_width
self.to_patch_embedding = nn.Sequential(
Rearrange("b c (h p1) (w p2) -> b (h w) (p1 p2 c)", p1 = patch_height, p2 = patch_width),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim),
)
self.to_freq_embedding = nn.Sequential(
Rearrange("b c (h p1) (w p2) ri -> b (h w) (p1 p2 ri c)", p1 = freq_patch_height, p2 = freq_patch_width),
nn.LayerNorm(freq_patch_dim),
nn.Linear(freq_patch_dim, dim),
nn.LayerNorm(dim)
)
self.pos_embedding = posemb_sincos_2d(
h = image_height // patch_height,
w = image_width // patch_width,
dim = dim,
)
self.freq_pos_embedding = posemb_sincos_2d(
h = image_height // freq_patch_height,
w = image_width // freq_patch_width,
dim = dim
)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim)
self.pool = "mean"
self.to_latent = nn.Identity()
self.linear_head = nn.Linear(dim, num_classes)
def forward(self, img):
device, dtype = img.device, img.dtype
x = self.to_patch_embedding(img)
freqs = torch.view_as_real(fft2(img))
f = self.to_freq_embedding(freqs)
x += self.pos_embedding.to(device, dtype = dtype)
f += self.freq_pos_embedding.to(device, dtype = dtype)
x, ps = pack((f, x), 'b * d')
x = self.transformer(x)
_, x = unpack(x, ps, 'b * d')
x = reduce(x, 'b n d -> b d', 'mean')
x = self.to_latent(x)
return self.linear_head(x)
if __name__ == '__main__':
vit = SimpleViT(
num_classes = 1000,
image_size = 256,
patch_size = 8,
freq_patch_size = 8,
dim = 1024,
depth = 1,
heads = 8,
mlp_dim = 2048,
)
images = torch.randn(8, 3, 256, 256)
logits = vit(images)

View File

@@ -61,10 +61,7 @@ class T2TViT(nn.Module):
self.pool = pool
self.to_latent = nn.Identity()
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
self.mlp_head = nn.Linear(dim, num_classes)
def forward(self, img):
x = self.to_patch_embedding(img)

View File

@@ -10,7 +10,7 @@ class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Layernorm(dim),
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),