mirror of
https://github.com/lucidrains/vit-pytorch.git
synced 2025-12-30 08:02:29 +00:00
Compare commits
1 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
df46165f1f |
38
README.md
38
README.md
@@ -1022,6 +1022,34 @@ video = torch.randn(4, 3, 16, 128, 128) # (batch, channels, frames, height, widt
|
||||
preds = v(video) # (4, 1000)
|
||||
```
|
||||
|
||||
## ViViT
|
||||
|
||||
<img src="./images/vivit.png" width="350px"></img>
|
||||
|
||||
This <a href="https://arxiv.org/abs/2103.15691">paper</a> offers 3 different types of architectures for efficient attention of videos, with the main theme being factorizing the attention across space and time. This repository will offer the first variant, which is a spatial transformer followed by a temporal one.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from vit_pytorch.vivit import ViT
|
||||
|
||||
v = ViT(
|
||||
image_size = 128, # image size
|
||||
frames = 16, # number of frames
|
||||
image_patch_size = 16, # image patch size
|
||||
frame_patch_size = 2, # frame patch size
|
||||
num_classes = 1000,
|
||||
dim = 1024,
|
||||
spatial_depth = 6, # depth of the spatial transformer
|
||||
temporal_depth = 6, # depth of the temporal transformer
|
||||
heads = 8,
|
||||
mlp_dim = 2048
|
||||
)
|
||||
|
||||
video = torch.randn(4, 3, 16, 128, 128) # (batch, channels, frames, height, width)
|
||||
|
||||
preds = v(video) # (4, 1000)
|
||||
```
|
||||
|
||||
## Parallel ViT
|
||||
|
||||
<img src="./images/parallel-vit.png" width="350px"></img>
|
||||
@@ -1805,6 +1833,16 @@ Coming from computer vision and new to transformers? Here are some resources tha
|
||||
|
||||
```
|
||||
|
||||
```bibtex
|
||||
@article{Arnab2021ViViTAV,
|
||||
title = {ViViT: A Video Vision Transformer},
|
||||
author = {Anurag Arnab and Mostafa Dehghani and Georg Heigold and Chen Sun and Mario Lucic and Cordelia Schmid},
|
||||
journal = {2021 IEEE/CVF International Conference on Computer Vision (ICCV)},
|
||||
year = {2021},
|
||||
pages = {6816-6826}
|
||||
}
|
||||
```
|
||||
|
||||
```bibtex
|
||||
@misc{vaswani2017attention,
|
||||
title = {Attention Is All You Need},
|
||||
|
||||
BIN
images/vivit.png
Normal file
BIN
images/vivit.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 104 KiB |
2
setup.py
2
setup.py
@@ -3,7 +3,7 @@ from setuptools import setup, find_packages
|
||||
setup(
|
||||
name = 'vit-pytorch',
|
||||
packages = find_packages(exclude=['examples']),
|
||||
version = '0.36.2',
|
||||
version = '0.37.0',
|
||||
license='MIT',
|
||||
description = 'Vision Transformer (ViT) - Pytorch',
|
||||
long_description_content_type = 'text/markdown',
|
||||
|
||||
169
vit_pytorch/vivit.py
Normal file
169
vit_pytorch/vivit.py
Normal file
@@ -0,0 +1,169 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from einops import rearrange, repeat
|
||||
from einops.layers.torch import Rearrange
|
||||
|
||||
# helpers
|
||||
|
||||
def pair(t):
|
||||
return t if isinstance(t, tuple) else (t, t)
|
||||
|
||||
# classes
|
||||
|
||||
class PreNorm(nn.Module):
|
||||
def __init__(self, dim, fn):
|
||||
super().__init__()
|
||||
self.norm = nn.LayerNorm(dim)
|
||||
self.fn = fn
|
||||
def forward(self, x, **kwargs):
|
||||
return self.fn(self.norm(x), **kwargs)
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, hidden_dim, dropout = 0.):
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.Linear(dim, hidden_dim),
|
||||
nn.GELU(),
|
||||
nn.Dropout(dropout),
|
||||
nn.Linear(hidden_dim, dim),
|
||||
nn.Dropout(dropout)
|
||||
)
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
|
||||
super().__init__()
|
||||
inner_dim = dim_head * heads
|
||||
project_out = not (heads == 1 and dim_head == dim)
|
||||
|
||||
self.heads = heads
|
||||
self.scale = dim_head ** -0.5
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
||||
|
||||
self.to_out = nn.Sequential(
|
||||
nn.Linear(inner_dim, dim),
|
||||
nn.Dropout(dropout)
|
||||
) if project_out else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
qkv = self.to_qkv(x).chunk(3, dim = -1)
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
|
||||
|
||||
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
|
||||
|
||||
attn = self.attend(dots)
|
||||
attn = self.dropout(attn)
|
||||
|
||||
out = torch.matmul(attn, v)
|
||||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||
return self.to_out(out)
|
||||
|
||||
class Transformer(nn.Module):
|
||||
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
|
||||
super().__init__()
|
||||
self.layers = nn.ModuleList([])
|
||||
for _ in range(depth):
|
||||
self.layers.append(nn.ModuleList([
|
||||
PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
|
||||
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
|
||||
]))
|
||||
def forward(self, x):
|
||||
for attn, ff in self.layers:
|
||||
x = attn(x) + x
|
||||
x = ff(x) + x
|
||||
return x
|
||||
|
||||
class ViT(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
image_size,
|
||||
image_patch_size,
|
||||
frames,
|
||||
frame_patch_size,
|
||||
num_classes,
|
||||
dim,
|
||||
spatial_depth,
|
||||
temporal_depth,
|
||||
heads,
|
||||
mlp_dim,
|
||||
pool = 'cls',
|
||||
channels = 3,
|
||||
dim_head = 64,
|
||||
dropout = 0.,
|
||||
emb_dropout = 0.
|
||||
):
|
||||
super().__init__()
|
||||
image_height, image_width = pair(image_size)
|
||||
patch_height, patch_width = pair(image_patch_size)
|
||||
|
||||
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
|
||||
assert frames % frame_patch_size == 0, 'Frames must be divisible by frame patch size'
|
||||
|
||||
num_patches = (image_height // patch_height) * (image_width // patch_width) * (frames // frame_patch_size)
|
||||
patch_dim = channels * patch_height * patch_width * frame_patch_size
|
||||
|
||||
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
|
||||
|
||||
self.to_patch_embedding = nn.Sequential(
|
||||
Rearrange('b c (f pf) (h p1) (w p2) -> b f (h w) (p1 p2 pf c)', p1 = patch_height, p2 = patch_width, pf = frame_patch_size),
|
||||
nn.Linear(patch_dim, dim),
|
||||
)
|
||||
|
||||
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
|
||||
self.dropout = nn.Dropout(emb_dropout)
|
||||
self.spatial_cls_token = nn.Parameter(torch.randn(1, 1, dim))
|
||||
self.temporal_cls_token = nn.Parameter(torch.randn(1, 1, dim))
|
||||
|
||||
self.spatial_transformer = Transformer(dim, spatial_depth, heads, dim_head, mlp_dim, dropout)
|
||||
self.temporal_transformer = Transformer(dim, temporal_depth, heads, dim_head, mlp_dim, dropout)
|
||||
|
||||
self.pool = pool
|
||||
self.to_latent = nn.Identity()
|
||||
|
||||
self.mlp_head = nn.Sequential(
|
||||
nn.LayerNorm(dim),
|
||||
nn.Linear(dim, num_classes)
|
||||
)
|
||||
|
||||
def forward(self, img):
|
||||
x = self.to_patch_embedding(img)
|
||||
b, f, n, _ = x.shape
|
||||
|
||||
spatial_cls_tokens = repeat(self.spatial_cls_token, '1 1 d -> b f 1 d', b = b, f = f)
|
||||
x = torch.cat((spatial_cls_tokens, x), dim = 2)
|
||||
x += self.pos_embedding[:, :(n + 1)]
|
||||
x = self.dropout(x)
|
||||
|
||||
x = rearrange(x, 'b f n d -> (b f) n d')
|
||||
|
||||
# attend across space
|
||||
|
||||
x = self.spatial_transformer(x)
|
||||
|
||||
x = rearrange(x, '(b f) n d -> b f n d', b = b)
|
||||
|
||||
# excise out the spatial cls tokens for temporal attention
|
||||
|
||||
x = x[:, :, 0]
|
||||
|
||||
# append temporal CLS tokens
|
||||
|
||||
temporal_cls_tokens = repeat(self.temporal_cls_token, '1 1 d-> b 1 d', b = b)
|
||||
|
||||
x = torch.cat((temporal_cls_tokens, x), dim = 1)
|
||||
|
||||
# attend across time
|
||||
|
||||
x = self.temporal_transformer(x)
|
||||
|
||||
x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]
|
||||
|
||||
x = self.to_latent(x)
|
||||
return self.mlp_head(x)
|
||||
Reference in New Issue
Block a user