mirror of
https://github.com/lucidrains/vit-pytorch.git
synced 2025-12-30 08:02:29 +00:00
Compare commits
4 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
36ddc7a6ba | ||
|
|
1d1a63fc5c | ||
|
|
74b62009f8 | ||
|
|
f50d7d1436 |
19
README.md
19
README.md
@@ -2133,4 +2133,23 @@ Coming from computer vision and new to transformers? Here are some resources tha
|
||||
}
|
||||
```
|
||||
|
||||
```bibtex
|
||||
@inproceedings{Loshchilov2024nGPTNT,
|
||||
title = {nGPT: Normalized Transformer with Representation Learning on the Hypersphere},
|
||||
author = {Ilya Loshchilov and Cheng-Ping Hsieh and Simeng Sun and Boris Ginsburg},
|
||||
year = {2024},
|
||||
url = {https://api.semanticscholar.org/CorpusID:273026160}
|
||||
}
|
||||
```
|
||||
|
||||
```bibtex
|
||||
@inproceedings{Liu2017DeepHL,
|
||||
title = {Deep Hyperspherical Learning},
|
||||
author = {Weiyang Liu and Yanming Zhang and Xingguo Li and Zhen Liu and Bo Dai and Tuo Zhao and Le Song},
|
||||
booktitle = {Neural Information Processing Systems},
|
||||
year = {2017},
|
||||
url = {https://api.semanticscholar.org/CorpusID:5104558}
|
||||
}
|
||||
```
|
||||
|
||||
*I visualise a time when we will be to robots what dogs are to humans, and I’m rooting for the machines.* — Claude Shannon
|
||||
|
||||
2
setup.py
2
setup.py
@@ -6,7 +6,7 @@ with open('README.md') as f:
|
||||
setup(
|
||||
name = 'vit-pytorch',
|
||||
packages = find_packages(exclude=['examples']),
|
||||
version = '1.7.14',
|
||||
version = '1.8.4',
|
||||
license='MIT',
|
||||
description = 'Vision Transformer (ViT) - Pytorch',
|
||||
long_description=long_description,
|
||||
|
||||
264
vit_pytorch/normalized_vit.py
Normal file
264
vit_pytorch/normalized_vit.py
Normal file
@@ -0,0 +1,264 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import Module, ModuleList
|
||||
import torch.nn.functional as F
|
||||
import torch.nn.utils.parametrize as parametrize
|
||||
|
||||
from einops import rearrange, reduce
|
||||
from einops.layers.torch import Rearrange
|
||||
|
||||
# functions
|
||||
|
||||
def exists(v):
|
||||
return v is not None
|
||||
|
||||
def default(v, d):
|
||||
return v if exists(v) else d
|
||||
|
||||
def pair(t):
|
||||
return t if isinstance(t, tuple) else (t, t)
|
||||
|
||||
def divisible_by(numer, denom):
|
||||
return (numer % denom) == 0
|
||||
|
||||
def l2norm(t, dim = -1):
|
||||
return F.normalize(t, dim = dim, p = 2)
|
||||
|
||||
# for use with parametrize
|
||||
|
||||
class L2Norm(Module):
|
||||
def __init__(self, dim = -1):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
|
||||
def forward(self, t):
|
||||
return l2norm(t, dim = self.dim)
|
||||
|
||||
class NormLinear(Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
dim_out,
|
||||
norm_dim_in = True
|
||||
):
|
||||
super().__init__()
|
||||
self.linear = nn.Linear(dim, dim_out, bias = False)
|
||||
|
||||
parametrize.register_parametrization(
|
||||
self.linear,
|
||||
'weight',
|
||||
L2Norm(dim = -1 if norm_dim_in else 0)
|
||||
)
|
||||
|
||||
@property
|
||||
def weight(self):
|
||||
return self.linear.weight
|
||||
|
||||
def forward(self, x):
|
||||
return self.linear(x)
|
||||
|
||||
# attention and feedforward
|
||||
|
||||
class Attention(Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
*,
|
||||
dim_head = 64,
|
||||
heads = 8,
|
||||
dropout = 0.
|
||||
):
|
||||
super().__init__()
|
||||
dim_inner = dim_head * heads
|
||||
self.to_q = NormLinear(dim, dim_inner)
|
||||
self.to_k = NormLinear(dim, dim_inner)
|
||||
self.to_v = NormLinear(dim, dim_inner)
|
||||
|
||||
self.dropout = dropout
|
||||
|
||||
self.q_scale = nn.Parameter(torch.ones(dim_inner) * (dim_head ** 0.25))
|
||||
self.k_scale = nn.Parameter(torch.ones(dim_inner) * (dim_head ** 0.25))
|
||||
|
||||
self.split_heads = Rearrange('b n (h d) -> b h n d', h = heads)
|
||||
self.merge_heads = Rearrange('b h n d -> b n (h d)')
|
||||
|
||||
self.to_out = NormLinear(dim_inner, dim, norm_dim_in = False)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x
|
||||
):
|
||||
q, k, v = self.to_q(x), self.to_k(x), self.to_v(x)
|
||||
|
||||
q = q * self.q_scale
|
||||
k = k * self.k_scale
|
||||
|
||||
q, k, v = map(self.split_heads, (q, k, v))
|
||||
|
||||
# query key rmsnorm
|
||||
|
||||
q, k = map(l2norm, (q, k))
|
||||
|
||||
# scale is 1., as scaling factor is moved to s_qk (dk ^ 0.25) - eq. 16
|
||||
|
||||
out = F.scaled_dot_product_attention(
|
||||
q, k, v,
|
||||
dropout_p = self.dropout if self.training else 0.,
|
||||
scale = 1.
|
||||
)
|
||||
|
||||
out = self.merge_heads(out)
|
||||
return self.to_out(out)
|
||||
|
||||
class FeedForward(Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
*,
|
||||
dim_inner,
|
||||
dropout = 0.
|
||||
):
|
||||
super().__init__()
|
||||
dim_inner = int(dim_inner * 2 / 3)
|
||||
|
||||
self.dim = dim
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
self.to_hidden = NormLinear(dim, dim_inner)
|
||||
self.to_gate = NormLinear(dim, dim_inner)
|
||||
|
||||
self.hidden_scale = nn.Parameter(torch.ones(dim_inner))
|
||||
self.gate_scale = nn.Parameter(torch.ones(dim_inner))
|
||||
|
||||
self.to_out = NormLinear(dim_inner, dim, norm_dim_in = False)
|
||||
|
||||
def forward(self, x):
|
||||
hidden, gate = self.to_hidden(x), self.to_gate(x)
|
||||
|
||||
hidden = hidden * self.hidden_scale
|
||||
gate = gate * self.gate_scale * (self.dim ** 0.5)
|
||||
|
||||
hidden = F.silu(gate) * hidden
|
||||
|
||||
hidden = self.dropout(hidden)
|
||||
return self.to_out(hidden)
|
||||
|
||||
# classes
|
||||
|
||||
class nViT(Module):
|
||||
""" https://arxiv.org/abs/2410.01131 """
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
image_size,
|
||||
patch_size,
|
||||
num_classes,
|
||||
dim,
|
||||
depth,
|
||||
heads,
|
||||
mlp_dim,
|
||||
dropout = 0.,
|
||||
channels = 3,
|
||||
dim_head = 64,
|
||||
residual_lerp_scale_init = None
|
||||
):
|
||||
super().__init__()
|
||||
image_height, image_width = pair(image_size)
|
||||
|
||||
# calculate patching related stuff
|
||||
|
||||
assert divisible_by(image_height, patch_size) and divisible_by(image_width, patch_size), 'Image dimensions must be divisible by the patch size.'
|
||||
|
||||
patch_height_dim, patch_width_dim = (image_height // patch_size), (image_width // patch_size)
|
||||
patch_dim = channels * (patch_size ** 2)
|
||||
num_patches = patch_height_dim * patch_width_dim
|
||||
|
||||
self.channels = channels
|
||||
self.patch_size = patch_size
|
||||
|
||||
self.to_patch_embedding = nn.Sequential(
|
||||
Rearrange('b c (h p1) (w p2) -> b (h w) (c p1 p2)', p1 = patch_size, p2 = patch_size),
|
||||
NormLinear(patch_dim, dim, norm_dim_in = False),
|
||||
)
|
||||
|
||||
self.abs_pos_emb = NormLinear(dim, num_patches)
|
||||
|
||||
residual_lerp_scale_init = default(residual_lerp_scale_init, 1. / depth)
|
||||
|
||||
# layers
|
||||
|
||||
self.dim = dim
|
||||
self.scale = dim ** 0.5
|
||||
|
||||
self.layers = ModuleList([])
|
||||
self.residual_lerp_scales = nn.ParameterList([])
|
||||
|
||||
for _ in range(depth):
|
||||
self.layers.append(ModuleList([
|
||||
Attention(dim, dim_head = dim_head, heads = heads, dropout = dropout),
|
||||
FeedForward(dim, dim_inner = mlp_dim, dropout = dropout),
|
||||
]))
|
||||
|
||||
self.residual_lerp_scales.append(nn.ParameterList([
|
||||
nn.Parameter(torch.ones(dim) * residual_lerp_scale_init / self.scale),
|
||||
nn.Parameter(torch.ones(dim) * residual_lerp_scale_init / self.scale),
|
||||
]))
|
||||
|
||||
self.logit_scale = nn.Parameter(torch.ones(num_classes))
|
||||
|
||||
self.to_pred = NormLinear(dim, num_classes)
|
||||
|
||||
@torch.no_grad()
|
||||
def norm_weights_(self):
|
||||
for module in self.modules():
|
||||
if not isinstance(module, NormLinear):
|
||||
continue
|
||||
|
||||
normed = module.weight
|
||||
original = module.linear.parametrizations.weight.original
|
||||
|
||||
original.copy_(normed)
|
||||
|
||||
def forward(self, images):
|
||||
device = images.device
|
||||
|
||||
tokens = self.to_patch_embedding(images)
|
||||
|
||||
seq_len = tokens.shape[-2]
|
||||
pos_emb = self.abs_pos_emb.weight[torch.arange(seq_len, device = device)]
|
||||
|
||||
tokens = l2norm(tokens + pos_emb)
|
||||
|
||||
for (attn, ff), (attn_alpha, ff_alpha) in zip(self.layers, self.residual_lerp_scales):
|
||||
|
||||
attn_out = l2norm(attn(tokens))
|
||||
tokens = l2norm(tokens.lerp(attn_out, attn_alpha * self.scale))
|
||||
|
||||
ff_out = l2norm(ff(tokens))
|
||||
tokens = l2norm(tokens.lerp(ff_out, ff_alpha * self.scale))
|
||||
|
||||
pooled = reduce(tokens, 'b n d -> b d', 'mean')
|
||||
|
||||
logits = self.to_pred(pooled)
|
||||
logits = logits * self.logit_scale * self.scale
|
||||
|
||||
return logits
|
||||
|
||||
# quick test
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
v = nViT(
|
||||
image_size = 256,
|
||||
patch_size = 16,
|
||||
num_classes = 1000,
|
||||
dim = 1024,
|
||||
depth = 6,
|
||||
heads = 8,
|
||||
mlp_dim = 2048,
|
||||
)
|
||||
|
||||
img = torch.randn(4, 3, 256, 256)
|
||||
logits = v(img) # (4, 1000)
|
||||
assert logits.shape == (4, 1000)
|
||||
@@ -3,14 +3,14 @@ from math import sqrt, pi, log
|
||||
import torch
|
||||
from torch import nn, einsum
|
||||
import torch.nn.functional as F
|
||||
from torch.cuda.amp import autocast
|
||||
from torch.amp import autocast
|
||||
|
||||
from einops import rearrange, repeat
|
||||
from einops.layers.torch import Rearrange
|
||||
|
||||
# rotary embeddings
|
||||
|
||||
@autocast(enabled = False)
|
||||
@autocast('cuda', enabled = False)
|
||||
def rotate_every_two(x):
|
||||
x = rearrange(x, '... (d j) -> ... d j', j = 2)
|
||||
x1, x2 = x.unbind(dim = -1)
|
||||
@@ -24,7 +24,7 @@ class AxialRotaryEmbedding(nn.Module):
|
||||
scales = torch.linspace(1., max_freq / 2, self.dim // 4)
|
||||
self.register_buffer('scales', scales)
|
||||
|
||||
@autocast(enabled = False)
|
||||
@autocast('cuda', enabled = False)
|
||||
def forward(self, x):
|
||||
device, dtype, n = x.device, x.dtype, int(sqrt(x.shape[-2]))
|
||||
|
||||
|
||||
Reference in New Issue
Block a user