Compare commits

...

14 Commits
1.7.5 ... 1.8.7

Author SHA1 Message Date
Phil Wang
141239ca86 fix value residual 2024-10-31 06:48:24 -07:00
lucidrains
0b5c9b4559 add value residual based simple vit 2024-10-28 09:19:00 -07:00
lucidrains
e300cdd7dc fix multiheaded qk rmsnorm in nViT 2024-10-10 19:15:17 -07:00
Phil Wang
36ddc7a6ba go all the way with the normalized vit, fix some scales 2024-10-10 10:42:37 -07:00
Phil Wang
1d1a63fc5c cite for hypersphere vit adapted from ngpt 2024-10-10 10:15:04 -07:00
Phil Wang
74b62009f8 go for multi-headed rmsnorm for the qknorm on hypersphere vit 2024-10-10 08:09:58 -07:00
Phil Wang
f50d7d1436 add a hypersphere vit, adapted from https://arxiv.org/abs/2410.01131 2024-10-09 07:32:25 -07:00
lucidrains
82f2fa751d address https://github.com/lucidrains/vit-pytorch/issues/330 2024-10-04 07:01:48 -07:00
lucidrains
fcb9501cdd add register tokens to the nested tensor 3d na vit example for researcher 2024-08-28 12:21:31 -07:00
lucidrains
c4651a35a3 1.7.11 2024-08-21 19:24:13 -07:00
roydenwa
9d43e4d0bb Add ViViT variant with factorized self-attention (#327)
* Add FactorizedTransformer

* Add variant param and check in fwd method

* Check if variant is implemented

* Describe new ViViT variant
2024-08-21 19:23:38 -07:00
Phil Wang
5e808f48d1 3d version of navit nested tensor 2024-08-21 07:23:21 -07:00
Phil Wang
bed48b5912 fix tests
fix tests
2024-08-20 15:35:04 -07:00
lucidrains
73199ab486 Nested navit (#325)
add a variant of NaViT using nested tensors
2024-08-20 15:12:29 -07:00
11 changed files with 1252 additions and 30 deletions

View File

@@ -28,6 +28,7 @@ jobs:
python -m pip install --upgrade pip
python -m pip install pytest
python -m pip install wheel
python -m pip install torch==2.4.0 torchvision==0.19.0 --index-url https://download.pytorch.org/whl/cpu
if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
- name: Test with pytest
run: |

View File

@@ -198,6 +198,38 @@ preds = v(
) # (5, 1000)
```
Finally, if you would like to make use of a flavor of NaViT using <a href="https://pytorch.org/tutorials/prototype/nestedtensor.html">nested tensors</a> (which will omit a lot of the masking and padding altogether), make sure you are on version `2.4` and import as follows
```python
import torch
from vit_pytorch.na_vit_nested_tensor import NaViT
v = NaViT(
image_size = 256,
patch_size = 32,
num_classes = 1000,
dim = 1024,
depth = 6,
heads = 16,
mlp_dim = 2048,
dropout = 0.,
emb_dropout = 0.,
token_dropout_prob = 0.1
)
# 5 images of different resolutions - List[Tensor]
images = [
torch.randn(3, 256, 256), torch.randn(3, 128, 128),
torch.randn(3, 128, 256), torch.randn(3, 256, 128),
torch.randn(3, 64, 256)
]
preds = v(images)
assert preds.shape == (5, 1000)
```
## Distillation
<img src="./images/distill.png" width="300px"></img>
@@ -1186,7 +1218,8 @@ pred = cct(video)
<img src="./images/vivit.png" width="350px"></img>
This <a href="https://arxiv.org/abs/2103.15691">paper</a> offers 3 different types of architectures for efficient attention of videos, with the main theme being factorizing the attention across space and time. This repository will offer the first variant, which is a spatial transformer followed by a temporal one.
This <a href="https://arxiv.org/abs/2103.15691">paper</a> offers 3 different types of architectures for efficient attention of videos, with the main theme being factorizing the attention across space and time. This repository includes the factorized encoder and the factorized self-attention variant.
The factorized encoder variant is a spatial transformer followed by a temporal one. The factorized self-attention variant is a spatio-temporal transformer with alternating spatial and temporal self-attention layers.
```python
import torch
@@ -1202,7 +1235,8 @@ v = ViT(
spatial_depth = 6, # depth of the spatial transformer
temporal_depth = 6, # depth of the temporal transformer
heads = 8,
mlp_dim = 2048
mlp_dim = 2048,
variant = 'factorized_encoder', # or 'factorized_self_attention'
)
video = torch.randn(4, 3, 16, 128, 128) # (batch, channels, frames, height, width)
@@ -2099,4 +2133,32 @@ Coming from computer vision and new to transformers? Here are some resources tha
}
```
```bibtex
@inproceedings{Loshchilov2024nGPTNT,
title = {nGPT: Normalized Transformer with Representation Learning on the Hypersphere},
author = {Ilya Loshchilov and Cheng-Ping Hsieh and Simeng Sun and Boris Ginsburg},
year = {2024},
url = {https://api.semanticscholar.org/CorpusID:273026160}
}
```
```bibtex
@inproceedings{Liu2017DeepHL,
title = {Deep Hyperspherical Learning},
author = {Weiyang Liu and Yanming Zhang and Xingguo Li and Zhen Liu and Bo Dai and Tuo Zhao and Le Song},
booktitle = {Neural Information Processing Systems},
year = {2017},
url = {https://api.semanticscholar.org/CorpusID:5104558}
}
```
```bibtex
@inproceedings{Zhou2024ValueRL,
title = {Value Residual Learning For Alleviating Attention Concentration In Transformers},
author = {Zhanchao Zhou and Tianyi Wu and Zhiyun Jiang and Zhenzhong Lan},
year = {2024},
url = {https://api.semanticscholar.org/CorpusID:273532030}
}
```
*I visualise a time when we will be to robots what dogs are to humans, and Im rooting for the machines.* — Claude Shannon

View File

@@ -6,7 +6,7 @@ with open('README.md') as f:
setup(
name = 'vit-pytorch',
packages = find_packages(exclude=['examples']),
version = '1.7.5',
version = '1.8.7',
license='MIT',
description = 'Vision Transformer (ViT) - Pytorch',
long_description=long_description,
@@ -29,8 +29,8 @@ setup(
],
tests_require=[
'pytest',
'torch==1.12.1',
'torchvision==0.13.1'
'torch==2.4.0',
'torchvision==0.19.0'
],
classifiers=[
'Development Status :: 4 - Beta',

View File

@@ -1,5 +1,7 @@
from __future__ import annotations
from functools import partial
from typing import List, Union
from typing import List
import torch
import torch.nn.functional as F
@@ -245,7 +247,7 @@ class NaViT(nn.Module):
def forward(
self,
batched_images: Union[List[Tensor], List[List[Tensor]]], # assume different resolution images already grouped correctly
batched_images: List[Tensor] | List[List[Tensor]], # assume different resolution images already grouped correctly
group_images = False,
group_max_seq_len = 2048
):
@@ -264,6 +266,11 @@ class NaViT(nn.Module):
max_seq_len = group_max_seq_len
)
# if List[Tensor] is not grouped -> List[List[Tensor]]
if torch.is_tensor(batched_images[0]):
batched_images = [batched_images]
# process images into variable lengthed sequences with attention mask
num_images = []

View File

@@ -0,0 +1,325 @@
from __future__ import annotations
from typing import List
from functools import partial
import torch
import packaging.version as pkg_version
if pkg_version.parse(torch.__version__) < pkg_version.parse('2.4'):
print('nested tensor NaViT was tested on pytorch 2.4')
from torch import nn, Tensor
import torch.nn.functional as F
from torch.nn import Module, ModuleList
from torch.nested import nested_tensor
from einops import rearrange
from einops.layers.torch import Rearrange
# helpers
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def divisible_by(numer, denom):
return (numer % denom) == 0
# feedforward
def FeedForward(dim, hidden_dim, dropout = 0.):
return nn.Sequential(
nn.LayerNorm(dim, bias = False),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
class Attention(Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
self.norm = nn.LayerNorm(dim, bias = False)
dim_inner = heads * dim_head
self.heads = heads
self.dim_head = dim_head
self.to_queries = nn.Linear(dim, dim_inner, bias = False)
self.to_keys = nn.Linear(dim, dim_inner, bias = False)
self.to_values = nn.Linear(dim, dim_inner, bias = False)
# in the paper, they employ qk rmsnorm, a way to stabilize attention
# will use layernorm in place of rmsnorm, which has been shown to work in certain papers. requires l2norm on non-ragged dimension to be supported in nested tensors
self.query_norm = nn.LayerNorm(dim_head, bias = False)
self.key_norm = nn.LayerNorm(dim_head, bias = False)
self.dropout = dropout
self.to_out = nn.Linear(dim_inner, dim, bias = False)
def forward(
self,
x,
context: Tensor | None = None
):
x = self.norm(x)
# for attention pooling, one query pooling to entire sequence
context = default(context, x)
# queries, keys, values
query = self.to_queries(x)
key = self.to_keys(context)
value = self.to_values(context)
# split heads
def split_heads(t):
return t.unflatten(-1, (self.heads, self.dim_head))
def transpose_head_seq(t):
return t.transpose(1, 2)
query, key, value = map(split_heads, (query, key, value))
# qk norm for attention stability
query = self.query_norm(query)
key = self.key_norm(key)
query, key, value = map(transpose_head_seq, (query, key, value))
# attention
out = F.scaled_dot_product_attention(
query, key, value,
dropout_p = self.dropout if self.training else 0.
)
# merge heads
out = out.transpose(1, 2).flatten(-2)
return self.to_out(out)
class Transformer(Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
self.layers = ModuleList([])
for _ in range(depth):
self.layers.append(ModuleList([
Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout),
FeedForward(dim, mlp_dim, dropout = dropout)
]))
self.norm = nn.LayerNorm(dim, bias = False)
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return self.norm(x)
class NaViT(Module):
def __init__(
self,
*,
image_size,
patch_size,
num_classes,
dim,
depth,
heads,
mlp_dim,
channels = 3,
dim_head = 64,
dropout = 0.,
emb_dropout = 0.,
token_dropout_prob: float | None = None
):
super().__init__()
image_height, image_width = pair(image_size)
# what percent of tokens to dropout
# if int or float given, then assume constant dropout prob
# otherwise accept a callback that in turn calculates dropout prob from height and width
self.token_dropout_prob = token_dropout_prob
# calculate patching related stuff
assert divisible_by(image_height, patch_size) and divisible_by(image_width, patch_size), 'Image dimensions must be divisible by the patch size.'
patch_height_dim, patch_width_dim = (image_height // patch_size), (image_width // patch_size)
patch_dim = channels * (patch_size ** 2)
self.channels = channels
self.patch_size = patch_size
self.to_patches = Rearrange('c (h p1) (w p2) -> h w (c p1 p2)', p1 = patch_size, p2 = patch_size)
self.to_patch_embedding = nn.Sequential(
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim),
)
self.pos_embed_height = nn.Parameter(torch.randn(patch_height_dim, dim))
self.pos_embed_width = nn.Parameter(torch.randn(patch_width_dim, dim))
self.dropout = nn.Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
# final attention pooling queries
self.attn_pool_queries = nn.Parameter(torch.randn(dim))
self.attn_pool = Attention(dim = dim, dim_head = dim_head, heads = heads)
# output to logits
self.to_latent = nn.Identity()
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim, bias = False),
nn.Linear(dim, num_classes, bias = False)
)
@property
def device(self):
return next(self.parameters()).device
def forward(
self,
images: List[Tensor], # different resolution images
):
batch, device = len(images), self.device
arange = partial(torch.arange, device = device)
assert all([image.ndim == 3 and image.shape[0] == self.channels for image in images]), f'all images must have {self.channels} channels and number of dimensions of 3 (channels, height, width)'
all_patches = [self.to_patches(image) for image in images]
# prepare factorized positional embedding height width indices
positions = []
for patches in all_patches:
patch_height, patch_width = patches.shape[:2]
hw_indices = torch.stack(torch.meshgrid((arange(patch_height), arange(patch_width)), indexing = 'ij'), dim = -1)
hw_indices = rearrange(hw_indices, 'h w c -> (h w) c')
positions.append(hw_indices)
# need the sizes to compute token dropout + positional embedding
tokens = [rearrange(patches, 'h w d -> (h w) d') for patches in all_patches]
# handle token dropout
seq_lens = torch.tensor([i.shape[0] for i in tokens], device = device)
if self.training and self.token_dropout_prob > 0:
keep_seq_lens = ((1. - self.token_dropout_prob) * seq_lens).int().clamp(min = 1)
kept_tokens = []
kept_positions = []
for one_image_tokens, one_image_positions, seq_len, num_keep in zip(tokens, positions, seq_lens, keep_seq_lens):
keep_indices = torch.randn((seq_len,), device = device).topk(num_keep, dim = -1).indices
one_image_kept_tokens = one_image_tokens[keep_indices]
one_image_kept_positions = one_image_positions[keep_indices]
kept_tokens.append(one_image_kept_tokens)
kept_positions.append(one_image_kept_positions)
tokens, positions, seq_lens = kept_tokens, kept_positions, keep_seq_lens
# add all height and width factorized positions
height_indices, width_indices = torch.cat(positions).unbind(dim = -1)
height_embed, width_embed = self.pos_embed_height[height_indices], self.pos_embed_width[width_indices]
pos_embed = height_embed + width_embed
# use nested tensor for transformers and save on padding computation
tokens = torch.cat(tokens)
# linear projection to patch embeddings
tokens = self.to_patch_embedding(tokens)
# absolute positions
tokens = tokens + pos_embed
tokens = nested_tensor(tokens.split(seq_lens.tolist()), layout = torch.jagged, device = device)
# embedding dropout
tokens = self.dropout(tokens)
# transformer
tokens = self.transformer(tokens)
# attention pooling
# will use a jagged tensor for queries, as SDPA requires all inputs to be jagged, or not
attn_pool_queries = [rearrange(self.attn_pool_queries, '... -> 1 ...')] * batch
attn_pool_queries = nested_tensor(attn_pool_queries, layout = torch.jagged)
pooled = self.attn_pool(attn_pool_queries, tokens)
# back to unjagged
logits = torch.stack(pooled.unbind())
logits = rearrange(logits, 'b 1 d -> b d')
logits = self.to_latent(logits)
return self.mlp_head(logits)
# quick test
if __name__ == '__main__':
v = NaViT(
image_size = 256,
patch_size = 32,
num_classes = 1000,
dim = 1024,
depth = 6,
heads = 16,
mlp_dim = 2048,
dropout = 0.,
emb_dropout = 0.,
token_dropout_prob = 0.1
)
# 5 images of different resolutions - List[Tensor]
images = [
torch.randn(3, 256, 256), torch.randn(3, 128, 128),
torch.randn(3, 128, 256), torch.randn(3, 256, 128),
torch.randn(3, 64, 256)
]
assert v(images).shape == (5, 1000)

View File

@@ -0,0 +1,364 @@
from __future__ import annotations
from typing import List
from functools import partial
import torch
import packaging.version as pkg_version
if pkg_version.parse(torch.__version__) < pkg_version.parse('2.4'):
print('nested tensor NaViT was tested on pytorch 2.4')
from torch import nn, Tensor
import torch.nn.functional as F
from torch.nn import Module, ModuleList
from torch.nested import nested_tensor
from einops import rearrange
from einops.layers.torch import Rearrange
# helpers
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def divisible_by(numer, denom):
return (numer % denom) == 0
# feedforward
def FeedForward(dim, hidden_dim, dropout = 0.):
return nn.Sequential(
nn.LayerNorm(dim, bias = False),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
class Attention(Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
self.norm = nn.LayerNorm(dim, bias = False)
dim_inner = heads * dim_head
self.heads = heads
self.dim_head = dim_head
self.to_queries = nn.Linear(dim, dim_inner, bias = False)
self.to_keys = nn.Linear(dim, dim_inner, bias = False)
self.to_values = nn.Linear(dim, dim_inner, bias = False)
# in the paper, they employ qk rmsnorm, a way to stabilize attention
# will use layernorm in place of rmsnorm, which has been shown to work in certain papers. requires l2norm on non-ragged dimension to be supported in nested tensors
self.query_norm = nn.LayerNorm(dim_head, bias = False)
self.key_norm = nn.LayerNorm(dim_head, bias = False)
self.dropout = dropout
self.to_out = nn.Linear(dim_inner, dim, bias = False)
def forward(
self,
x,
context: Tensor | None = None
):
x = self.norm(x)
# for attention pooling, one query pooling to entire sequence
context = default(context, x)
# queries, keys, values
query = self.to_queries(x)
key = self.to_keys(context)
value = self.to_values(context)
# split heads
def split_heads(t):
return t.unflatten(-1, (self.heads, self.dim_head)).transpose(1, 2).contiguous()
# queries, keys, values
query = self.to_queries(x)
key = self.to_keys(context)
value = self.to_values(context)
# split heads
def split_heads(t):
return t.unflatten(-1, (self.heads, self.dim_head))
def transpose_head_seq(t):
return t.transpose(1, 2)
query, key, value = map(split_heads, (query, key, value))
# qk norm for attention stability
query = self.query_norm(query)
key = self.key_norm(key)
query, key, value = map(transpose_head_seq, (query, key, value))
# attention
out = F.scaled_dot_product_attention(
query, key, value,
dropout_p = self.dropout if self.training else 0.
)
# merge heads
out = out.transpose(1, 2).flatten(-2)
return self.to_out(out)
class Transformer(Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
self.layers = ModuleList([])
for _ in range(depth):
self.layers.append(ModuleList([
Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout),
FeedForward(dim, mlp_dim, dropout = dropout)
]))
self.norm = nn.LayerNorm(dim, bias = False)
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return self.norm(x)
class NaViT(Module):
def __init__(
self,
*,
image_size,
max_frames,
patch_size,
frame_patch_size,
num_classes,
dim,
depth,
heads,
mlp_dim,
channels = 3,
dim_head = 64,
dropout = 0.,
emb_dropout = 0.,
num_registers = 4,
token_dropout_prob: float | None = None
):
super().__init__()
image_height, image_width = pair(image_size)
# what percent of tokens to dropout
# if int or float given, then assume constant dropout prob
# otherwise accept a callback that in turn calculates dropout prob from height and width
self.token_dropout_prob = token_dropout_prob
# calculate patching related stuff
assert divisible_by(image_height, patch_size) and divisible_by(image_width, patch_size), 'Image dimensions must be divisible by the patch size.'
assert divisible_by(max_frames, frame_patch_size)
patch_frame_dim, patch_height_dim, patch_width_dim = (max_frames // frame_patch_size), (image_height // patch_size), (image_width // patch_size)
patch_dim = channels * (patch_size ** 2) * frame_patch_size
self.channels = channels
self.patch_size = patch_size
self.to_patches = Rearrange('c (f pf) (h p1) (w p2) -> f h w (c p1 p2 pf)', p1 = patch_size, p2 = patch_size, pf = frame_patch_size)
self.to_patch_embedding = nn.Sequential(
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim),
)
self.pos_embed_frame = nn.Parameter(torch.zeros(patch_frame_dim, dim))
self.pos_embed_height = nn.Parameter(torch.zeros(patch_height_dim, dim))
self.pos_embed_width = nn.Parameter(torch.zeros(patch_width_dim, dim))
# register tokens
self.register_tokens = nn.Parameter(torch.zeros(num_registers, dim))
nn.init.normal_(self.pos_embed_frame, std = 0.02)
nn.init.normal_(self.pos_embed_height, std = 0.02)
nn.init.normal_(self.pos_embed_width, std = 0.02)
nn.init.normal_(self.register_tokens, std = 0.02)
self.dropout = nn.Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
# final attention pooling queries
self.attn_pool_queries = nn.Parameter(torch.randn(dim))
self.attn_pool = Attention(dim = dim, dim_head = dim_head, heads = heads)
# output to logits
self.to_latent = nn.Identity()
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim, bias = False),
nn.Linear(dim, num_classes, bias = False)
)
@property
def device(self):
return next(self.parameters()).device
def forward(
self,
volumes: List[Tensor], # different resolution images / CT scans
):
batch, device = len(volumes), self.device
arange = partial(torch.arange, device = device)
assert all([volume.ndim == 4 and volume.shape[0] == self.channels for volume in volumes]), f'all volumes must have {self.channels} channels and number of dimensions of {self.channels} (channels, frame, height, width)'
all_patches = [self.to_patches(volume) for volume in volumes]
# prepare factorized positional embedding height width indices
positions = []
for patches in all_patches:
patch_frame, patch_height, patch_width = patches.shape[:3]
fhw_indices = torch.stack(torch.meshgrid((arange(patch_frame), arange(patch_height), arange(patch_width)), indexing = 'ij'), dim = -1)
fhw_indices = rearrange(fhw_indices, 'f h w c -> (f h w) c')
positions.append(fhw_indices)
# need the sizes to compute token dropout + positional embedding
tokens = [rearrange(patches, 'f h w d -> (f h w) d') for patches in all_patches]
# handle token dropout
seq_lens = torch.tensor([i.shape[0] for i in tokens], device = device)
if self.training and self.token_dropout_prob > 0:
keep_seq_lens = ((1. - self.token_dropout_prob) * seq_lens).int().clamp(min = 1)
kept_tokens = []
kept_positions = []
for one_image_tokens, one_image_positions, seq_len, num_keep in zip(tokens, positions, seq_lens, keep_seq_lens):
keep_indices = torch.randn((seq_len,), device = device).topk(num_keep, dim = -1).indices
one_image_kept_tokens = one_image_tokens[keep_indices]
one_image_kept_positions = one_image_positions[keep_indices]
kept_tokens.append(one_image_kept_tokens)
kept_positions.append(one_image_kept_positions)
tokens, positions, seq_lens = kept_tokens, kept_positions, keep_seq_lens
# add all height and width factorized positions
frame_indices, height_indices, width_indices = torch.cat(positions).unbind(dim = -1)
frame_embed, height_embed, width_embed = self.pos_embed_frame[frame_indices], self.pos_embed_height[height_indices], self.pos_embed_width[width_indices]
pos_embed = frame_embed + height_embed + width_embed
tokens = torch.cat(tokens)
# linear projection to patch embeddings
tokens = self.to_patch_embedding(tokens)
# absolute positions
tokens = tokens + pos_embed
# add register tokens
tokens = tokens.split(seq_lens.tolist())
tokens = [torch.cat((self.register_tokens, one_tokens)) for one_tokens in tokens]
# use nested tensor for transformers and save on padding computation
tokens = nested_tensor(tokens, layout = torch.jagged, device = device)
# embedding dropout
tokens = self.dropout(tokens)
# transformer
tokens = self.transformer(tokens)
# attention pooling
# will use a jagged tensor for queries, as SDPA requires all inputs to be jagged, or not
attn_pool_queries = [rearrange(self.attn_pool_queries, '... -> 1 ...')] * batch
attn_pool_queries = nested_tensor(attn_pool_queries, layout = torch.jagged)
pooled = self.attn_pool(attn_pool_queries, tokens)
# back to unjagged
logits = torch.stack(pooled.unbind())
logits = rearrange(logits, 'b 1 d -> b d')
logits = self.to_latent(logits)
return self.mlp_head(logits)
# quick test
if __name__ == '__main__':
# works for torch 2.4
v = NaViT(
image_size = 256,
max_frames = 8,
patch_size = 32,
frame_patch_size = 2,
num_classes = 1000,
dim = 1024,
depth = 6,
heads = 16,
mlp_dim = 2048,
dropout = 0.,
emb_dropout = 0.,
token_dropout_prob = 0.1
)
# 5 volumetric data (videos or CT scans) of different resolutions - List[Tensor]
volumes = [
torch.randn(3, 2, 256, 256), torch.randn(3, 8, 128, 128),
torch.randn(3, 4, 128, 256), torch.randn(3, 2, 256, 128),
torch.randn(3, 4, 64, 256)
]
assert v(volumes).shape == (5, 1000)

View File

@@ -0,0 +1,264 @@
import torch
from torch import nn
from torch.nn import Module, ModuleList
import torch.nn.functional as F
import torch.nn.utils.parametrize as parametrize
from einops import rearrange, reduce
from einops.layers.torch import Rearrange
# functions
def exists(v):
return v is not None
def default(v, d):
return v if exists(v) else d
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def divisible_by(numer, denom):
return (numer % denom) == 0
def l2norm(t, dim = -1):
return F.normalize(t, dim = dim, p = 2)
# for use with parametrize
class L2Norm(Module):
def __init__(self, dim = -1):
super().__init__()
self.dim = dim
def forward(self, t):
return l2norm(t, dim = self.dim)
class NormLinear(Module):
def __init__(
self,
dim,
dim_out,
norm_dim_in = True
):
super().__init__()
self.linear = nn.Linear(dim, dim_out, bias = False)
parametrize.register_parametrization(
self.linear,
'weight',
L2Norm(dim = -1 if norm_dim_in else 0)
)
@property
def weight(self):
return self.linear.weight
def forward(self, x):
return self.linear(x)
# attention and feedforward
class Attention(Module):
def __init__(
self,
dim,
*,
dim_head = 64,
heads = 8,
dropout = 0.
):
super().__init__()
dim_inner = dim_head * heads
self.to_q = NormLinear(dim, dim_inner)
self.to_k = NormLinear(dim, dim_inner)
self.to_v = NormLinear(dim, dim_inner)
self.dropout = dropout
self.q_scale = nn.Parameter(torch.ones(heads, 1, dim_head) * (dim_head ** 0.25))
self.k_scale = nn.Parameter(torch.ones(heads, 1, dim_head) * (dim_head ** 0.25))
self.split_heads = Rearrange('b n (h d) -> b h n d', h = heads)
self.merge_heads = Rearrange('b h n d -> b n (h d)')
self.to_out = NormLinear(dim_inner, dim, norm_dim_in = False)
def forward(
self,
x
):
q, k, v = self.to_q(x), self.to_k(x), self.to_v(x)
q, k, v = map(self.split_heads, (q, k, v))
# query key rmsnorm
q, k = map(l2norm, (q, k))
q = q * self.q_scale
k = k * self.k_scale
# scale is 1., as scaling factor is moved to s_qk (dk ^ 0.25) - eq. 16
out = F.scaled_dot_product_attention(
q, k, v,
dropout_p = self.dropout if self.training else 0.,
scale = 1.
)
out = self.merge_heads(out)
return self.to_out(out)
class FeedForward(Module):
def __init__(
self,
dim,
*,
dim_inner,
dropout = 0.
):
super().__init__()
dim_inner = int(dim_inner * 2 / 3)
self.dim = dim
self.dropout = nn.Dropout(dropout)
self.to_hidden = NormLinear(dim, dim_inner)
self.to_gate = NormLinear(dim, dim_inner)
self.hidden_scale = nn.Parameter(torch.ones(dim_inner))
self.gate_scale = nn.Parameter(torch.ones(dim_inner))
self.to_out = NormLinear(dim_inner, dim, norm_dim_in = False)
def forward(self, x):
hidden, gate = self.to_hidden(x), self.to_gate(x)
hidden = hidden * self.hidden_scale
gate = gate * self.gate_scale * (self.dim ** 0.5)
hidden = F.silu(gate) * hidden
hidden = self.dropout(hidden)
return self.to_out(hidden)
# classes
class nViT(Module):
""" https://arxiv.org/abs/2410.01131 """
def __init__(
self,
*,
image_size,
patch_size,
num_classes,
dim,
depth,
heads,
mlp_dim,
dropout = 0.,
channels = 3,
dim_head = 64,
residual_lerp_scale_init = None
):
super().__init__()
image_height, image_width = pair(image_size)
# calculate patching related stuff
assert divisible_by(image_height, patch_size) and divisible_by(image_width, patch_size), 'Image dimensions must be divisible by the patch size.'
patch_height_dim, patch_width_dim = (image_height // patch_size), (image_width // patch_size)
patch_dim = channels * (patch_size ** 2)
num_patches = patch_height_dim * patch_width_dim
self.channels = channels
self.patch_size = patch_size
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (c p1 p2)', p1 = patch_size, p2 = patch_size),
NormLinear(patch_dim, dim, norm_dim_in = False),
)
self.abs_pos_emb = NormLinear(dim, num_patches)
residual_lerp_scale_init = default(residual_lerp_scale_init, 1. / depth)
# layers
self.dim = dim
self.scale = dim ** 0.5
self.layers = ModuleList([])
self.residual_lerp_scales = nn.ParameterList([])
for _ in range(depth):
self.layers.append(ModuleList([
Attention(dim, dim_head = dim_head, heads = heads, dropout = dropout),
FeedForward(dim, dim_inner = mlp_dim, dropout = dropout),
]))
self.residual_lerp_scales.append(nn.ParameterList([
nn.Parameter(torch.ones(dim) * residual_lerp_scale_init / self.scale),
nn.Parameter(torch.ones(dim) * residual_lerp_scale_init / self.scale),
]))
self.logit_scale = nn.Parameter(torch.ones(num_classes))
self.to_pred = NormLinear(dim, num_classes)
@torch.no_grad()
def norm_weights_(self):
for module in self.modules():
if not isinstance(module, NormLinear):
continue
normed = module.weight
original = module.linear.parametrizations.weight.original
original.copy_(normed)
def forward(self, images):
device = images.device
tokens = self.to_patch_embedding(images)
seq_len = tokens.shape[-2]
pos_emb = self.abs_pos_emb.weight[torch.arange(seq_len, device = device)]
tokens = l2norm(tokens + pos_emb)
for (attn, ff), (attn_alpha, ff_alpha) in zip(self.layers, self.residual_lerp_scales):
attn_out = l2norm(attn(tokens))
tokens = l2norm(tokens.lerp(attn_out, attn_alpha * self.scale))
ff_out = l2norm(ff(tokens))
tokens = l2norm(tokens.lerp(ff_out, ff_alpha * self.scale))
pooled = reduce(tokens, 'b n d -> b d', 'mean')
logits = self.to_pred(pooled)
logits = logits * self.logit_scale * self.scale
return logits
# quick test
if __name__ == '__main__':
v = nViT(
image_size = 256,
patch_size = 16,
num_classes = 1000,
dim = 1024,
depth = 6,
heads = 8,
mlp_dim = 2048,
)
img = torch.randn(4, 3, 256, 256)
logits = v(img) # (4, 1000)
assert logits.shape == (4, 1000)

View File

@@ -20,6 +20,18 @@ def divisible_by(val, d):
# helper classes
class ChanLayerNorm(nn.Module):
def __init__(self, dim, eps = 1e-5):
super().__init__()
self.eps = eps
self.g = nn.Parameter(torch.ones(1, dim, 1, 1))
self.b = nn.Parameter(torch.zeros(1, dim, 1, 1))
def forward(self, x):
var = torch.var(x, dim = 1, unbiased = False, keepdim = True)
mean = torch.mean(x, dim = 1, keepdim = True)
return (x - mean) / (var + self.eps).sqrt() * self.g + self.b
class Downsample(nn.Module):
def __init__(self, dim_in, dim_out):
super().__init__()
@@ -212,10 +224,10 @@ class RegionViT(nn.Module):
if tokenize_local_3_conv:
self.local_encoder = nn.Sequential(
nn.Conv2d(3, init_dim, 3, 2, 1),
nn.LayerNorm(init_dim),
ChanLayerNorm(init_dim),
nn.GELU(),
nn.Conv2d(init_dim, init_dim, 3, 2, 1),
nn.LayerNorm(init_dim),
ChanLayerNorm(init_dim),
nn.GELU(),
nn.Conv2d(init_dim, init_dim, 3, 1, 1)
)

View File

@@ -3,14 +3,14 @@ from math import sqrt, pi, log
import torch
from torch import nn, einsum
import torch.nn.functional as F
from torch.cuda.amp import autocast
from torch.amp import autocast
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
# rotary embeddings
@autocast(enabled = False)
@autocast('cuda', enabled = False)
def rotate_every_two(x):
x = rearrange(x, '... (d j) -> ... d j', j = 2)
x1, x2 = x.unbind(dim = -1)
@@ -24,7 +24,7 @@ class AxialRotaryEmbedding(nn.Module):
scales = torch.linspace(1., max_freq / 2, self.dim // 4)
self.register_buffer('scales', scales)
@autocast(enabled = False)
@autocast('cuda', enabled = False)
def forward(self, x):
device, dtype, n = x.device, x.dtype, int(sqrt(x.shape[-2]))

View File

@@ -0,0 +1,151 @@
import torch
from torch import nn
from torch.nn import Module, ModuleList
from einops import rearrange
from einops.layers.torch import Rearrange
# helpers
def exists(v):
return v is not None
def default(v, d):
return v if exists(v) else d
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def posemb_sincos_2d(h, w, dim, temperature: int = 10000, dtype = torch.float32):
y, x = torch.meshgrid(torch.arange(h), torch.arange(w), indexing="ij")
assert (dim % 4) == 0, "feature dimension must be multiple of 4 for sincos emb"
omega = torch.arange(dim // 4) / (dim // 4 - 1)
omega = 1.0 / (temperature ** omega)
y = y.flatten()[:, None] * omega[None, :]
x = x.flatten()[:, None] * omega[None, :]
pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim=1)
return pe.type(dtype)
# classes
def FeedForward(dim, hidden_dim):
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, dim),
)
class Attention(Module):
def __init__(self, dim, heads = 8, dim_head = 64):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Linear(inner_dim, dim, bias = False)
def forward(self, x, value_residual = None):
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
if exists(value_residual):
v = 0.5 * (v + value_residual)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out), v
class Transformer(Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.layers = ModuleList([])
for _ in range(depth):
self.layers.append(ModuleList([
Attention(dim, heads = heads, dim_head = dim_head),
FeedForward(dim, mlp_dim)
]))
def forward(self, x):
value_residual = None
for attn, ff in self.layers:
attn_out, values = attn(x, value_residual = value_residual)
value_residual = default(value_residual, values)
x = attn_out + x
x = ff(x) + x
return self.norm(x)
class SimpleViT(Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
patch_dim = channels * patch_height * patch_width
self.to_patch_embedding = nn.Sequential(
Rearrange("b c (h p1) (w p2) -> b (h w) (p1 p2 c)", p1 = patch_height, p2 = patch_width),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim),
)
self.pos_embedding = posemb_sincos_2d(
h = image_height // patch_height,
w = image_width // patch_width,
dim = dim,
)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim)
self.pool = "mean"
self.to_latent = nn.Identity()
self.linear_head = nn.Linear(dim, num_classes)
def forward(self, img):
device = img.device
x = self.to_patch_embedding(img)
x += self.pos_embedding.to(device, dtype=x.dtype)
x = self.transformer(x)
x = x.mean(dim = 1)
x = self.to_latent(x)
return self.linear_head(x)
# quick test
if __name__ == '__main__':
v = SimpleViT(
num_classes = 1000,
image_size = 256,
patch_size = 8,
dim = 1024,
depth = 6,
heads = 8,
mlp_dim = 2048,
)
images = torch.randn(2, 3, 256, 256)
logits = v(images)

View File

@@ -78,6 +78,30 @@ class Transformer(nn.Module):
x = ff(x) + x
return self.norm(x)
class FactorizedTransformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout),
Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout),
FeedForward(dim, mlp_dim, dropout = dropout)
]))
def forward(self, x):
b, f, n, _ = x.shape
for spatial_attn, temporal_attn, ff in self.layers:
x = rearrange(x, 'b f n d -> (b f) n d')
x = spatial_attn(x) + x
x = rearrange(x, '(b f) n d -> (b n) f d', b=b, f=f)
x = temporal_attn(x) + x
x = ff(x) + x
x = rearrange(x, '(b n) f d -> b f n d', b=b, n=n)
return self.norm(x)
class ViT(nn.Module):
def __init__(
self,
@@ -96,7 +120,8 @@ class ViT(nn.Module):
channels = 3,
dim_head = 64,
dropout = 0.,
emb_dropout = 0.
emb_dropout = 0.,
variant = 'factorized_encoder',
):
super().__init__()
image_height, image_width = pair(image_size)
@@ -104,6 +129,7 @@ class ViT(nn.Module):
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
assert frames % frame_patch_size == 0, 'Frames must be divisible by frame patch size'
assert variant in ('factorized_encoder', 'factorized_self_attention'), f'variant = {variant} is not implemented'
num_image_patches = (image_height // patch_height) * (image_width // patch_width)
num_frame_patches = (frames // frame_patch_size)
@@ -125,15 +151,20 @@ class ViT(nn.Module):
self.dropout = nn.Dropout(emb_dropout)
self.spatial_cls_token = nn.Parameter(torch.randn(1, 1, dim)) if not self.global_average_pool else None
self.temporal_cls_token = nn.Parameter(torch.randn(1, 1, dim)) if not self.global_average_pool else None
self.spatial_transformer = Transformer(dim, spatial_depth, heads, dim_head, mlp_dim, dropout)
self.temporal_transformer = Transformer(dim, temporal_depth, heads, dim_head, mlp_dim, dropout)
if variant == 'factorized_encoder':
self.temporal_cls_token = nn.Parameter(torch.randn(1, 1, dim)) if not self.global_average_pool else None
self.spatial_transformer = Transformer(dim, spatial_depth, heads, dim_head, mlp_dim, dropout)
self.temporal_transformer = Transformer(dim, temporal_depth, heads, dim_head, mlp_dim, dropout)
elif variant == 'factorized_self_attention':
assert spatial_depth == temporal_depth, 'Spatial and temporal depth must be the same for factorized self-attention'
self.factorized_transformer = FactorizedTransformer(dim, spatial_depth, heads, dim_head, mlp_dim, dropout)
self.pool = pool
self.to_latent = nn.Identity()
self.mlp_head = nn.Linear(dim, num_classes)
self.variant = variant
def forward(self, video):
x = self.to_patch_embedding(video)
@@ -147,32 +178,37 @@ class ViT(nn.Module):
x = self.dropout(x)
x = rearrange(x, 'b f n d -> (b f) n d')
if self.variant == 'factorized_encoder':
x = rearrange(x, 'b f n d -> (b f) n d')
# attend across space
# attend across space
x = self.spatial_transformer(x)
x = self.spatial_transformer(x)
x = rearrange(x, '(b f) n d -> b f n d', b = b)
x = rearrange(x, '(b f) n d -> b f n d', b = b)
# excise out the spatial cls tokens or average pool for temporal attention
# excise out the spatial cls tokens or average pool for temporal attention
x = x[:, :, 0] if not self.global_average_pool else reduce(x, 'b f n d -> b f d', 'mean')
x = x[:, :, 0] if not self.global_average_pool else reduce(x, 'b f n d -> b f d', 'mean')
# append temporal CLS tokens
# append temporal CLS tokens
if exists(self.temporal_cls_token):
temporal_cls_tokens = repeat(self.temporal_cls_token, '1 1 d-> b 1 d', b = b)
if exists(self.temporal_cls_token):
temporal_cls_tokens = repeat(self.temporal_cls_token, '1 1 d-> b 1 d', b = b)
x = torch.cat((temporal_cls_tokens, x), dim = 1)
x = torch.cat((temporal_cls_tokens, x), dim = 1)
# attend across time
# attend across time
x = self.temporal_transformer(x)
x = self.temporal_transformer(x)
# excise out temporal cls token or average pool
# excise out temporal cls token or average pool
x = x[:, 0] if not self.global_average_pool else reduce(x, 'b f d -> b d', 'mean')
x = x[:, 0] if not self.global_average_pool else reduce(x, 'b f d -> b d', 'mean')
elif self.variant == 'factorized_self_attention':
x = self.factorized_transformer(x)
x = x[:, 0, 0] if not self.global_average_pool else reduce(x, 'b f n d -> b d', 'mean')
x = self.to_latent(x)
return self.mlp_head(x)