mirror of
https://github.com/lucidrains/vit-pytorch.git
synced 2025-12-30 16:12:29 +00:00
Compare commits
8 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
29ac8e143c | ||
|
|
e05cd6d8b8 | ||
|
|
b46233c3d6 | ||
|
|
68e13a3c7d | ||
|
|
b22dc0ecd2 | ||
|
|
db05a141a6 | ||
|
|
9f49a31977 | ||
|
|
ab63fc9cc8 |
@@ -2172,4 +2172,13 @@ Coming from computer vision and new to transformers? Here are some resources tha
|
||||
}
|
||||
```
|
||||
|
||||
```bibtex
|
||||
@inproceedings{Fuller2025SimplerFV,
|
||||
title = {Simpler Fast Vision Transformers with a Jumbo CLS Token},
|
||||
author = {Anthony Fuller and Yousef Yassin and Daniel G. Kyrollos and Evan Shelhamer and James R. Green},
|
||||
year = {2025},
|
||||
url = {https://api.semanticscholar.org/CorpusID:276557720}
|
||||
}
|
||||
```
|
||||
|
||||
*I visualise a time when we will be to robots what dogs are to humans, and I’m rooting for the machines.* — Claude Shannon
|
||||
|
||||
2
setup.py
2
setup.py
@@ -6,7 +6,7 @@ with open('README.md') as f:
|
||||
setup(
|
||||
name = 'vit-pytorch',
|
||||
packages = find_packages(exclude=['examples']),
|
||||
version = '1.9.1',
|
||||
version = '1.11.4',
|
||||
license='MIT',
|
||||
description = 'Vision Transformer (ViT) - Pytorch',
|
||||
long_description = long_description,
|
||||
|
||||
129
vit_pytorch/accept_video_wrapper.py
Normal file
129
vit_pytorch/accept_video_wrapper.py
Normal file
@@ -0,0 +1,129 @@
|
||||
from contextlib import nullcontext
|
||||
|
||||
import torch
|
||||
from torch import is_tensor, randn
|
||||
from torch.nn import Module, Parameter
|
||||
from torch.utils._pytree import tree_flatten, tree_unflatten
|
||||
|
||||
from einops import rearrange, repeat
|
||||
|
||||
# helper functions
|
||||
|
||||
def exists(v):
|
||||
return v is not None
|
||||
|
||||
def default(v, d):
|
||||
return v if exists(v) else d
|
||||
|
||||
# classes
|
||||
|
||||
class AcceptVideoWrapper(Module):
|
||||
def __init__(
|
||||
self,
|
||||
image_net: Module,
|
||||
forward_function = 'forward',
|
||||
add_time_pos_emb = False,
|
||||
dim_emb = None,
|
||||
time_seq_len = None,
|
||||
output_pos_add_pos_emb = 0 # defaults to first output position to add embedding
|
||||
):
|
||||
super().__init__()
|
||||
self.image_net = image_net
|
||||
self.forward_function = forward_function # for openclip, used in TRI-LBM
|
||||
|
||||
self.add_time_pos_emb = add_time_pos_emb
|
||||
self.output_pos_add_pos_emb = output_pos_add_pos_emb
|
||||
|
||||
if add_time_pos_emb:
|
||||
assert exists(dim_emb) and exists(time_seq_len), '`dim_emb` and `time_seq_len` must be set if adding positional embeddings to the output'
|
||||
self.time_seq_len = time_seq_len
|
||||
|
||||
self.pos_emb = Parameter(randn(time_seq_len, dim_emb) * 1e-2)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
video, # (b c t h w)
|
||||
eval_with_no_grad = False,
|
||||
forward_kwargs = dict()
|
||||
):
|
||||
add_time_pos_emb = self.add_time_pos_emb
|
||||
time = video.shape[2]
|
||||
|
||||
# maybe validate time positional embedding
|
||||
|
||||
if add_time_pos_emb:
|
||||
assert time <= self.time_seq_len, f'received video with {time} frames but `time_seq_len` ({self.time_seq_len}) is too low'
|
||||
|
||||
video = rearrange(video, 'b c t h w -> b t c h w')
|
||||
|
||||
video = rearrange(video, 'b t ... -> (b t) ...')
|
||||
|
||||
# forward through image net for outputs
|
||||
|
||||
func = getattr(self.image_net, self.forward_function)
|
||||
|
||||
if eval_with_no_grad:
|
||||
self.image_net.eval()
|
||||
|
||||
context = torch.no_grad if eval_with_no_grad else nullcontext
|
||||
|
||||
with context():
|
||||
outputs = func(video, **forward_kwargs)
|
||||
|
||||
# handle multiple outputs, say logits and embeddings returned from extractor - also handle some reduce aux loss being returned
|
||||
|
||||
outputs, tree_spec = tree_flatten(outputs)
|
||||
|
||||
outputs = tuple(rearrange(t, '(b t) ... -> b t ...', t = time) if is_tensor(t) and t.numel() > 1 else t for t in outputs)
|
||||
|
||||
# maybe add time positional embedding
|
||||
|
||||
if add_time_pos_emb:
|
||||
|
||||
outputs = list(outputs)
|
||||
embed = outputs[self.output_pos_add_pos_emb]
|
||||
|
||||
pos_emb = rearrange(self.pos_emb, 't d -> 1 t d')
|
||||
|
||||
# handle the network outputting embeddings with spatial dimensions intact - assume embedded dimension is last
|
||||
|
||||
dims_to_unsqueeze = embed.ndim - pos_emb.ndim
|
||||
|
||||
pos_emb = pos_emb.reshape(*pos_emb.shape[:2], *((1,) * dims_to_unsqueeze) , pos_emb.shape[-1])
|
||||
|
||||
embed = embed + pos_emb[:, :embed.shape[1]]
|
||||
|
||||
outputs[self.output_pos_add_pos_emb] = embed
|
||||
|
||||
return tree_unflatten(outputs, tree_spec)
|
||||
|
||||
# main
|
||||
|
||||
if __name__ == '__main__':
|
||||
from vit_pytorch import ViT
|
||||
|
||||
v = ViT(
|
||||
image_size = 256,
|
||||
patch_size = 32,
|
||||
num_classes = 1000,
|
||||
dim = 1024,
|
||||
depth = 6,
|
||||
heads = 16,
|
||||
mlp_dim = 2048,
|
||||
dropout = 0.1,
|
||||
emb_dropout = 0.1
|
||||
)
|
||||
|
||||
videos = torch.randn(1, 3, 7, 256, 256)
|
||||
|
||||
# step up the difficulty and return embeddings for robotics
|
||||
|
||||
from vit_pytorch.extractor import Extractor
|
||||
v = Extractor(v)
|
||||
|
||||
video_acceptor = AcceptVideoWrapper(v, add_time_pos_emb = True, output_pos_add_pos_emb = 1, time_seq_len = 12, dim_emb = 1024)
|
||||
|
||||
logits, embeddings = video_acceptor(videos, eval_with_no_grad = True) # always (batch, channels, time, height, width) - time is always dimension 2
|
||||
|
||||
assert logits.shape == (1, 7, 1000)
|
||||
assert embeddings.shape == (1, 7, 65, 1024)
|
||||
204
vit_pytorch/jumbo_vit.py
Normal file
204
vit_pytorch/jumbo_vit.py
Normal file
@@ -0,0 +1,204 @@
|
||||
# Simpler Fast Vision Transformers with a Jumbo CLS Token
|
||||
# https://arxiv.org/abs/2502.15021
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import Module, ModuleList
|
||||
|
||||
from einops import rearrange, repeat, reduce, pack, unpack
|
||||
from einops.layers.torch import Rearrange
|
||||
|
||||
# helpers
|
||||
|
||||
def pair(t):
|
||||
return t if isinstance(t, tuple) else (t, t)
|
||||
|
||||
def divisible_by(num, den):
|
||||
return (num % den) == 0
|
||||
|
||||
def posemb_sincos_2d(h, w, dim, temperature: int = 10000, dtype = torch.float32):
|
||||
y, x = torch.meshgrid(torch.arange(h), torch.arange(w), indexing="ij")
|
||||
assert divisible_by(dim, 4), "feature dimension must be multiple of 4 for sincos emb"
|
||||
|
||||
omega = torch.arange(dim // 4) / (dim // 4 - 1)
|
||||
omega = temperature ** -omega
|
||||
|
||||
y = y.flatten()[:, None] * omega[None, :]
|
||||
x = x.flatten()[:, None] * omega[None, :]
|
||||
pos_emb = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim=1)
|
||||
|
||||
return pos_emb.type(dtype)
|
||||
|
||||
# classes
|
||||
|
||||
def FeedForward(dim, mult = 4.):
|
||||
hidden_dim = int(dim * mult)
|
||||
return nn.Sequential(
|
||||
nn.LayerNorm(dim),
|
||||
nn.Linear(dim, hidden_dim),
|
||||
nn.GELU(),
|
||||
nn.Linear(hidden_dim, dim),
|
||||
)
|
||||
|
||||
class Attention(Module):
|
||||
def __init__(self, dim, heads = 8, dim_head = 64):
|
||||
super().__init__()
|
||||
inner_dim = dim_head * heads
|
||||
self.heads = heads
|
||||
self.scale = dim_head ** -0.5
|
||||
self.norm = nn.LayerNorm(dim)
|
||||
|
||||
self.attend = nn.Softmax(dim = -1)
|
||||
|
||||
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
||||
self.to_out = nn.Linear(inner_dim, dim, bias = False)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.norm(x)
|
||||
|
||||
qkv = self.to_qkv(x).chunk(3, dim = -1)
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
|
||||
|
||||
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
|
||||
|
||||
attn = self.attend(dots)
|
||||
|
||||
out = torch.matmul(attn, v)
|
||||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||
return self.to_out(out)
|
||||
|
||||
class JumboViT(Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
image_size,
|
||||
patch_size,
|
||||
num_classes,
|
||||
dim,
|
||||
depth,
|
||||
heads,
|
||||
mlp_dim,
|
||||
num_jumbo_cls = 1, # differing from paper, allow for multiple jumbo cls, so one could break it up into 2 jumbo cls tokens with 3x the dim, as an example
|
||||
jumbo_cls_k = 6, # they use a CLS token with this factor times the dimension - 6 was the value they settled on
|
||||
jumbo_ff_mult = 2, # expansion factor of the jumbo cls token feedforward
|
||||
channels = 3,
|
||||
dim_head = 64
|
||||
):
|
||||
super().__init__()
|
||||
image_height, image_width = pair(image_size)
|
||||
patch_height, patch_width = pair(patch_size)
|
||||
|
||||
assert divisible_by(image_height, patch_height) and divisible_by(image_width, patch_width), 'Image dimensions must be divisible by the patch size.'
|
||||
|
||||
patch_dim = channels * patch_height * patch_width
|
||||
|
||||
self.to_patch_embedding = nn.Sequential(
|
||||
Rearrange("b c (h p1) (w p2) -> b (h w) (p1 p2 c)", p1 = patch_height, p2 = patch_width),
|
||||
nn.LayerNorm(patch_dim),
|
||||
nn.Linear(patch_dim, dim),
|
||||
nn.LayerNorm(dim),
|
||||
)
|
||||
|
||||
self.pos_embedding = posemb_sincos_2d(
|
||||
h = image_height // patch_height,
|
||||
w = image_width // patch_width,
|
||||
dim = dim,
|
||||
)
|
||||
|
||||
jumbo_cls_dim = dim * jumbo_cls_k
|
||||
|
||||
self.jumbo_cls_token = nn.Parameter(torch.zeros(num_jumbo_cls, jumbo_cls_dim))
|
||||
|
||||
jumbo_cls_to_tokens = Rearrange('b n (k d) -> b (n k) d', k = jumbo_cls_k)
|
||||
self.jumbo_cls_to_tokens = jumbo_cls_to_tokens
|
||||
|
||||
self.norm = nn.LayerNorm(dim)
|
||||
self.layers = ModuleList([])
|
||||
|
||||
# attention and feedforwards
|
||||
|
||||
self.jumbo_ff = nn.Sequential(
|
||||
Rearrange('b (n k) d -> b n (k d)', k = jumbo_cls_k),
|
||||
FeedForward(jumbo_cls_dim, int(jumbo_cls_dim * jumbo_ff_mult)), # they use separate parameters for the jumbo feedforward, weight tied for parameter efficient
|
||||
jumbo_cls_to_tokens
|
||||
)
|
||||
|
||||
for _ in range(depth):
|
||||
self.layers.append(ModuleList([
|
||||
Attention(dim, heads = heads, dim_head = dim_head),
|
||||
FeedForward(dim, mlp_dim),
|
||||
]))
|
||||
|
||||
self.to_latent = nn.Identity()
|
||||
|
||||
self.linear_head = nn.Linear(dim, num_classes)
|
||||
|
||||
def forward(self, img):
|
||||
|
||||
batch, device = img.shape[0], img.device
|
||||
|
||||
x = self.to_patch_embedding(img)
|
||||
|
||||
# pos embedding
|
||||
|
||||
pos_emb = self.pos_embedding.to(device, dtype = x.dtype)
|
||||
|
||||
x = x + pos_emb
|
||||
|
||||
# add cls tokens
|
||||
|
||||
cls_tokens = repeat(self.jumbo_cls_token, 'nj d -> b nj d', b = batch)
|
||||
|
||||
jumbo_tokens = self.jumbo_cls_to_tokens(cls_tokens)
|
||||
|
||||
x, cls_packed_shape = pack([jumbo_tokens, x], 'b * d')
|
||||
|
||||
# attention and feedforwards
|
||||
|
||||
for layer, (attn, ff) in enumerate(self.layers, start = 1):
|
||||
is_last = layer == len(self.layers)
|
||||
|
||||
x = attn(x) + x
|
||||
|
||||
# jumbo feedforward
|
||||
|
||||
jumbo_cls_tokens, x = unpack(x, cls_packed_shape, 'b * d')
|
||||
|
||||
x = ff(x) + x
|
||||
jumbo_cls_tokens = self.jumbo_ff(jumbo_cls_tokens) + jumbo_cls_tokens
|
||||
|
||||
if is_last:
|
||||
continue
|
||||
|
||||
x, _ = pack([jumbo_cls_tokens, x], 'b * d')
|
||||
|
||||
pooled = reduce(jumbo_cls_tokens, 'b n d -> b d', 'mean')
|
||||
|
||||
# normalization and project to logits
|
||||
|
||||
embed = self.norm(pooled)
|
||||
|
||||
embed = self.to_latent(embed)
|
||||
logits = self.linear_head(embed)
|
||||
return logits
|
||||
|
||||
# copy pasteable file
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
v = JumboViT(
|
||||
num_classes = 1000,
|
||||
image_size = 64,
|
||||
patch_size = 8,
|
||||
dim = 16,
|
||||
depth = 2,
|
||||
heads = 2,
|
||||
mlp_dim = 32,
|
||||
jumbo_cls_k = 3,
|
||||
jumbo_ff_mult = 2,
|
||||
)
|
||||
|
||||
images = torch.randn(1, 3, 64, 64)
|
||||
|
||||
logits = v(images)
|
||||
assert logits.shape == (1, 1000)
|
||||
@@ -83,17 +83,6 @@ class Attention(Module):
|
||||
|
||||
# split heads
|
||||
|
||||
def split_heads(t):
|
||||
return t.unflatten(-1, (self.heads, self.dim_head)).transpose(1, 2).contiguous()
|
||||
|
||||
# queries, keys, values
|
||||
|
||||
query = self.to_queries(x)
|
||||
key = self.to_keys(context)
|
||||
value = self.to_values(context)
|
||||
|
||||
# split heads
|
||||
|
||||
def split_heads(t):
|
||||
return t.unflatten(-1, (self.heads, self.dim_head))
|
||||
|
||||
|
||||
Reference in New Issue
Block a user