from math import sqrt import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange, repeat from einops.layers.torch import Rearrange # helpers def cast_tuple(val, num): return val if isinstance(val, tuple) else (val,) * num def conv_output_size(image_size, kernel_size, stride, padding = 0): return int(((image_size - kernel_size + (2 * padding)) / stride) + 1) # classes class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): super().__init__() inner_dim = dim_head * heads project_out = not (heads == 1 and dim_head == dim) self.heads = heads self.scale = dim_head ** -0.5 self.norm = nn.LayerNorm(dim) self.attend = nn.Softmax(dim = -1) self.dropout = nn.Dropout(dropout) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) if project_out else nn.Identity() def forward(self, x): b, n, _, h = *x.shape, self.heads x = self.norm(x) qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv) dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale attn = self.attend(dots) attn = self.dropout(attn) out = einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout), FeedForward(dim, mlp_dim, dropout = dropout) ])) def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return x # depthwise convolution, for pooling class DepthWiseConv2d(nn.Module): def __init__(self, dim_in, dim_out, kernel_size, padding, stride, bias = True): super().__init__() self.net = nn.Sequential( nn.Conv2d(dim_in, dim_out, kernel_size = kernel_size, padding = padding, groups = dim_in, stride = stride, bias = bias), nn.Conv2d(dim_out, dim_out, kernel_size = 1, bias = bias) ) def forward(self, x): return self.net(x) # pooling layer class Pool(nn.Module): def __init__(self, dim): super().__init__() self.downsample = DepthWiseConv2d(dim, dim * 2, kernel_size = 3, stride = 2, padding = 1) self.cls_ff = nn.Linear(dim, dim * 2) def forward(self, x): cls_token, tokens = x[:, :1], x[:, 1:] cls_token = self.cls_ff(cls_token) tokens = rearrange(tokens, 'b (h w) c -> b c h w', h = int(sqrt(tokens.shape[1]))) tokens = self.downsample(tokens) tokens = rearrange(tokens, 'b c h w -> b (h w) c') return torch.cat((cls_token, tokens), dim = 1) # main class class PiT(nn.Module): def __init__( self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, dim_head = 64, dropout = 0., emb_dropout = 0., channels = 3 ): super().__init__() assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.' assert isinstance(depth, tuple), 'depth must be a tuple of integers, specifying the number of blocks before each downsizing' heads = cast_tuple(heads, len(depth)) patch_dim = channels * patch_size ** 2 self.to_patch_embedding = nn.Sequential( nn.Unfold(kernel_size = patch_size, stride = patch_size // 2), Rearrange('b c n -> b n c'), nn.Linear(patch_dim, dim) ) output_size = conv_output_size(image_size, patch_size, patch_size // 2) num_patches = output_size ** 2 self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) self.dropout = nn.Dropout(emb_dropout) layers = [] for ind, (layer_depth, layer_heads) in enumerate(zip(depth, heads)): not_last = ind < (len(depth) - 1) layers.append(Transformer(dim, layer_depth, layer_heads, dim_head, mlp_dim, dropout)) if not_last: layers.append(Pool(dim)) dim *= 2 self.layers = nn.Sequential(*layers) self.mlp_head = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_classes) ) def forward(self, img): x = self.to_patch_embedding(img) b, n, _ = x.shape cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b) x = torch.cat((cls_tokens, x), dim=1) x += self.pos_embedding[:, :n+1] x = self.dropout(x) x = self.layers(x) return self.mlp_head(x[:, 0])