from collections import namedtuple from packaging import version import torch import torch.nn.functional as F from torch import nn from einops import rearrange from einops.layers.torch import Rearrange # constants Config = namedtuple('FlashAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient']) # helpers def pair(t): return t if isinstance(t, tuple) else (t, t) def posemb_sincos_2d(patches, temperature = 10000, dtype = torch.float32): _, h, w, dim, device, dtype = *patches.shape, patches.device, patches.dtype y, x = torch.meshgrid(torch.arange(h, device = device), torch.arange(w, device = device), indexing = 'ij') assert (dim % 4) == 0, 'feature dimension must be multiple of 4 for sincos emb' omega = torch.arange(dim // 4, device = device) / (dim // 4 - 1) omega = 1. / (temperature ** omega) y = y.flatten()[:, None] * omega[None, :] x = x.flatten()[:, None] * omega[None, :] pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim = 1) return pe.type(dtype) # main class class Attend(nn.Module): def __init__(self, use_flash = False): super().__init__() self.use_flash = use_flash assert not (use_flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above' # determine efficient attention configs for cuda and cpu self.cpu_config = Config(True, True, True) self.cuda_config = None if not torch.cuda.is_available() or not use_flash: return device_properties = torch.cuda.get_device_properties(torch.device('cuda')) if device_properties.major == 8 and device_properties.minor == 0: self.cuda_config = Config(True, False, False) else: self.cuda_config = Config(False, True, True) def flash_attn(self, q, k, v): config = self.cuda_config if q.is_cuda else self.cpu_config # flash attention - https://arxiv.org/abs/2205.14135 with torch.backends.cuda.sdp_kernel(**config._asdict()): out = F.scaled_dot_product_attention(q, k, v) return out def forward(self, q, k, v): n, device, scale = q.shape[-2], q.device, q.shape[-1] ** -0.5 if self.use_flash: return self.flash_attn(q, k, v) # similarity sim = einsum("b h i d, b j d -> b h i j", q, k) * scale # attention attn = sim.softmax(dim=-1) # aggregate values out = einsum("b h i j, b j d -> b h i d", attn, v) return out # classes class FeedForward(nn.Module): def __init__(self, dim, hidden_dim): super().__init__() self.net = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, hidden_dim), nn.GELU(), nn.Linear(hidden_dim, dim), ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, use_flash = True): super().__init__() inner_dim = dim_head * heads self.heads = heads self.scale = dim_head ** -0.5 self.norm = nn.LayerNorm(dim) self.attend = Attend(use_flash = use_flash) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Linear(inner_dim, dim, bias = False) def forward(self, x): x = self.norm(x) qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) out = self.attend(q, k, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, use_flash): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim, heads = heads, dim_head = dim_head, use_flash = use_flash), FeedForward(dim, mlp_dim) ])) def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return x class SimpleViT(nn.Module): def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64, use_flash = True): super().__init__() image_height, image_width = pair(image_size) patch_height, patch_width = pair(patch_size) assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' num_patches = (image_height // patch_height) * (image_width // patch_width) patch_dim = channels * patch_height * patch_width self.to_patch_embedding = nn.Sequential( Rearrange('b c (h p1) (w p2) -> b h w (p1 p2 c)', p1 = patch_height, p2 = patch_width), nn.LayerNorm(patch_dim), nn.Linear(patch_dim, dim), nn.LayerNorm(dim), ) self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, use_flash) self.to_latent = nn.Identity() self.linear_head = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_classes) ) def forward(self, img): *_, h, w, dtype = *img.shape, img.dtype x = self.to_patch_embedding(img) pe = posemb_sincos_2d(x) x = rearrange(x, 'b ... d -> b (...) d') + pe x = self.transformer(x) x = x.mean(dim = 1) x = self.to_latent(x) return self.linear_head(x)