import math import torch from torch import nn from vit_pytorch.vit import Transformer from einops import rearrange, repeat from einops.layers.torch import Rearrange # helpers def exists(val): return val is not None def conv_output_size(image_size, kernel_size, stride, padding): return int(((image_size - kernel_size + (2 * padding)) / stride) + 1) # classes class RearrangeImage(nn.Module): def forward(self, x): return rearrange(x, 'b (h w) c -> b c h w', h = int(math.sqrt(x.shape[1]))) # main class class T2TViT(nn.Module): def __init__(self, *, image_size, num_classes, dim, depth = None, heads = None, mlp_dim = None, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0., transformer = None, t2t_layers = ((7, 4), (3, 2), (3, 2))): super().__init__() assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)' layers = [] layer_dim = channels output_image_size = image_size for i, (kernel_size, stride) in enumerate(t2t_layers): layer_dim *= kernel_size ** 2 is_first = i == 0 is_last = i == (len(t2t_layers) - 1) output_image_size = conv_output_size(output_image_size, kernel_size, stride, stride // 2) layers.extend([ RearrangeImage() if not is_first else nn.Identity(), nn.Unfold(kernel_size = kernel_size, stride = stride, padding = stride // 2), Rearrange('b c n -> b n c'), Transformer(dim = layer_dim, heads = 1, depth = 1, dim_head = layer_dim, mlp_dim = layer_dim, dropout = dropout) if not is_last else nn.Identity(), ]) layers.append(nn.Linear(layer_dim, dim)) self.to_patch_embedding = nn.Sequential(*layers) self.pos_embedding = nn.Parameter(torch.randn(1, output_image_size ** 2 + 1, dim)) self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) self.dropout = nn.Dropout(emb_dropout) if not exists(transformer): assert all([exists(depth), exists(heads), exists(mlp_dim)]), 'depth, heads, and mlp_dim must be supplied' self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) else: self.transformer = transformer self.pool = pool self.to_latent = nn.Identity() self.mlp_head = nn.Linear(dim, num_classes) def forward(self, img): x = self.to_patch_embedding(img) b, n, _ = x.shape cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b) x = torch.cat((cls_tokens, x), dim=1) x += self.pos_embedding[:, :n+1] x = self.dropout(x) x = self.transformer(x) x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0] x = self.to_latent(x) return self.mlp_head(x)