import torch from torch import nn from einops import rearrange, repeat, reduce from einops.layers.torch import Rearrange # helpers def exists(val): return val is not None def pair(t): return t if isinstance(t, tuple) else (t, t) # classes class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): super().__init__() inner_dim = dim_head * heads project_out = not (heads == 1 and dim_head == dim) self.heads = heads self.scale = dim_head ** -0.5 self.norm = nn.LayerNorm(dim) self.attend = nn.Softmax(dim = -1) self.dropout = nn.Dropout(dropout) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) if project_out else nn.Identity() def forward(self, x): x = self.norm(x) qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale attn = self.attend(dots) attn = self.dropout(attn) out = torch.matmul(attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): super().__init__() self.norm = nn.LayerNorm(dim) self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout), FeedForward(dim, mlp_dim, dropout = dropout) ])) def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return self.norm(x) class FactorizedTransformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): super().__init__() self.norm = nn.LayerNorm(dim) self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout), Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout), FeedForward(dim, mlp_dim, dropout = dropout) ])) def forward(self, x): b, f, n, _ = x.shape for spatial_attn, temporal_attn, ff in self.layers: x = rearrange(x, 'b f n d -> (b f) n d') x = spatial_attn(x) + x x = rearrange(x, '(b f) n d -> (b n) f d', b=b, f=f) x = temporal_attn(x) + x x = ff(x) + x x = rearrange(x, '(b n) f d -> b f n d', b=b, n=n) return self.norm(x) class ViT(nn.Module): def __init__( self, *, image_size, image_patch_size, frames, frame_patch_size, num_classes, dim, spatial_depth, temporal_depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0., variant = 'factorized_encoder', ): super().__init__() image_height, image_width = pair(image_size) patch_height, patch_width = pair(image_patch_size) assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' assert frames % frame_patch_size == 0, 'Frames must be divisible by frame patch size' assert variant in ('factorized_encoder', 'factorized_self_attention'), f'variant = {variant} is not implemented' num_image_patches = (image_height // patch_height) * (image_width // patch_width) num_frame_patches = (frames // frame_patch_size) patch_dim = channels * patch_height * patch_width * frame_patch_size assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)' self.global_average_pool = pool == 'mean' self.to_patch_embedding = nn.Sequential( Rearrange('b c (f pf) (h p1) (w p2) -> b f (h w) (pf p1 p2 c)', p1 = patch_height, p2 = patch_width, pf = frame_patch_size), nn.LayerNorm(patch_dim), nn.Linear(patch_dim, dim), nn.LayerNorm(dim) ) self.pos_embedding = nn.Parameter(torch.randn(1, num_frame_patches, num_image_patches, dim)) self.dropout = nn.Dropout(emb_dropout) self.spatial_cls_token = nn.Parameter(torch.randn(1, 1, dim)) if not self.global_average_pool else None if variant == 'factorized_encoder': self.temporal_cls_token = nn.Parameter(torch.randn(1, 1, dim)) if not self.global_average_pool else None self.spatial_transformer = Transformer(dim, spatial_depth, heads, dim_head, mlp_dim, dropout) self.temporal_transformer = Transformer(dim, temporal_depth, heads, dim_head, mlp_dim, dropout) elif variant == 'factorized_self_attention': assert spatial_depth == temporal_depth, 'Spatial and temporal depth must be the same for factorized self-attention' self.factorized_transformer = FactorizedTransformer(dim, spatial_depth, heads, dim_head, mlp_dim, dropout) self.pool = pool self.to_latent = nn.Identity() self.mlp_head = nn.Linear(dim, num_classes) self.variant = variant def forward(self, video): x = self.to_patch_embedding(video) b, f, n, _ = x.shape x = x + self.pos_embedding[:, :f, :n] if exists(self.spatial_cls_token): spatial_cls_tokens = repeat(self.spatial_cls_token, '1 1 d -> b f 1 d', b = b, f = f) x = torch.cat((spatial_cls_tokens, x), dim = 2) x = self.dropout(x) if self.variant == 'factorized_encoder': x = rearrange(x, 'b f n d -> (b f) n d') # attend across space x = self.spatial_transformer(x) x = rearrange(x, '(b f) n d -> b f n d', b = b) # excise out the spatial cls tokens or average pool for temporal attention x = x[:, :, 0] if not self.global_average_pool else reduce(x, 'b f n d -> b f d', 'mean') # append temporal CLS tokens if exists(self.temporal_cls_token): temporal_cls_tokens = repeat(self.temporal_cls_token, '1 1 d-> b 1 d', b = b) x = torch.cat((temporal_cls_tokens, x), dim = 1) # attend across time x = self.temporal_transformer(x) # excise out temporal cls token or average pool x = x[:, 0] if not self.global_average_pool else reduce(x, 'b f d -> b d', 'mean') elif self.variant == 'factorized_self_attention': x = self.factorized_transformer(x) x = x[:, 0, 0] if not self.global_average_pool else reduce(x, 'b f n d -> b d', 'mean') x = self.to_latent(x) return self.mlp_head(x)