from math import sqrt, pi, log import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange, repeat from einops.layers.torch import Rearrange # rotary embeddings def rotate_every_two(x): x = rearrange(x, '... (d j) -> ... d j', j = 2) x1, x2 = x.unbind(dim = -1) x = torch.stack((-x2, x1), dim = -1) return rearrange(x, '... d j -> ... (d j)') class AxialRotaryEmbedding(nn.Module): def __init__(self, dim, max_freq = 10): super().__init__() self.dim = dim scales = torch.linspace(1., max_freq / 2, self.dim // 4) self.register_buffer('scales', scales) def forward(self, x): device, dtype, n = x.device, x.dtype, int(sqrt(x.shape[-2])) seq = torch.linspace(-1., 1., steps = n, device = device) seq = seq.unsqueeze(-1) scales = self.scales[(*((None,) * (len(seq.shape) - 1)), Ellipsis)] scales = scales.to(x) seq = seq * scales * pi x_sinu = repeat(seq, 'i d -> i j d', j = n) y_sinu = repeat(seq, 'j d -> i j d', i = n) sin = torch.cat((x_sinu.sin(), y_sinu.sin()), dim = -1) cos = torch.cat((x_sinu.cos(), y_sinu.cos()), dim = -1) sin, cos = map(lambda t: rearrange(t, 'i j d -> (i j) d'), (sin, cos)) sin, cos = map(lambda t: repeat(t, 'n d -> () n (d j)', j = 2), (sin, cos)) return sin, cos class DepthWiseConv2d(nn.Module): def __init__(self, dim_in, dim_out, kernel_size, padding, stride = 1, bias = True): super().__init__() self.net = nn.Sequential( nn.Conv2d(dim_in, dim_in, kernel_size = kernel_size, padding = padding, groups = dim_in, stride = stride, bias = bias), nn.Conv2d(dim_in, dim_out, kernel_size = 1, bias = bias) ) def forward(self, x): return self.net(x) # helper classes class PreNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.norm = nn.LayerNorm(dim) self.fn = fn def forward(self, x, **kwargs): return self.fn(self.norm(x), **kwargs) class SpatialConv(nn.Module): def __init__(self, dim_in, dim_out, kernel, bias = False): super().__init__() self.conv = DepthWiseConv2d(dim_in, dim_out, kernel, padding = kernel // 2, bias = False) self.cls_proj = nn.Linear(dim_in, dim_out) if dim_in != dim_out else nn.Identity() def forward(self, x, fmap_dims): cls_token, x = x[:, :1], x[:, 1:] x = rearrange(x, 'b (h w) d -> b d h w', **fmap_dims) x = self.conv(x) x = rearrange(x, 'b d h w -> b (h w) d') cls_token = self.cls_proj(cls_token) return torch.cat((cls_token, x), dim = 1) class GEGLU(nn.Module): def forward(self, x): x, gates = x.chunk(2, dim = -1) return F.gelu(gates) * x class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout = 0., use_glu = True): super().__init__() self.net = nn.Sequential( nn.Linear(dim, hidden_dim * 2 if use_glu else hidden_dim), GEGLU() if use_glu else nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0., use_rotary = True, use_ds_conv = True, conv_query_kernel = 5): super().__init__() inner_dim = dim_head * heads self.use_rotary = use_rotary self.heads = heads self.scale = dim_head ** -0.5 self.attend = nn.Softmax(dim = -1) self.dropout = nn.Dropout(dropout) self.use_ds_conv = use_ds_conv self.to_q = SpatialConv(dim, inner_dim, conv_query_kernel, bias = False) if use_ds_conv else nn.Linear(dim, inner_dim, bias = False) self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) def forward(self, x, pos_emb, fmap_dims): b, n, _, h = *x.shape, self.heads to_q_kwargs = {'fmap_dims': fmap_dims} if self.use_ds_conv else {} q = self.to_q(x, **to_q_kwargs) qkv = (q, *self.to_kv(x).chunk(2, dim = -1)) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = h), qkv) if self.use_rotary: # apply 2d rotary embeddings to queries and keys, excluding CLS tokens sin, cos = pos_emb dim_rotary = sin.shape[-1] (q_cls, q), (k_cls, k) = map(lambda t: (t[:, :1], t[:, 1:]), (q, k)) # handle the case where rotary dimension < head dimension (q, q_pass), (k, k_pass) = map(lambda t: (t[..., :dim_rotary], t[..., dim_rotary:]), (q, k)) q, k = map(lambda t: (t * cos) + (rotate_every_two(t) * sin), (q, k)) q, k = map(lambda t: torch.cat(t, dim = -1), ((q, q_pass), (k, k_pass))) # concat back the CLS tokens q = torch.cat((q_cls, q), dim = 1) k = torch.cat((k_cls, k), dim = 1) dots = einsum('b i d, b j d -> b i j', q, k) * self.scale attn = self.attend(dots) attn = self.dropout(attn) out = einsum('b i j, b j d -> b i d', attn, v) out = rearrange(out, '(b h) n d -> b n (h d)', h = h) return self.to_out(out) class Transformer(nn.Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim, image_size, dropout = 0., use_rotary = True, use_ds_conv = True, use_glu = True): super().__init__() self.layers = nn.ModuleList([]) self.pos_emb = AxialRotaryEmbedding(dim_head, max_freq = image_size) for _ in range(depth): self.layers.append(nn.ModuleList([ PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout, use_rotary = use_rotary, use_ds_conv = use_ds_conv)), PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout, use_glu = use_glu)) ])) def forward(self, x, fmap_dims): pos_emb = self.pos_emb(x[:, 1:]) for attn, ff in self.layers: x = attn(x, pos_emb = pos_emb, fmap_dims = fmap_dims) + x x = ff(x) + x return x # Rotary Vision Transformer class RvT(nn.Module): def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0., use_rotary = True, use_ds_conv = True, use_glu = True): super().__init__() assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.' num_patches = (image_size // patch_size) ** 2 patch_dim = channels * patch_size ** 2 self.patch_size = patch_size self.to_patch_embedding = nn.Sequential( Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size), nn.Linear(patch_dim, dim), ) self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, image_size, dropout, use_rotary, use_ds_conv, use_glu) self.mlp_head = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_classes) ) def forward(self, img): b, _, h, w, p = *img.shape, self.patch_size x = self.to_patch_embedding(img) n = x.shape[1] cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b) x = torch.cat((cls_tokens, x), dim=1) fmap_dims = {'h': h // p, 'w': w // p} x = self.transformer(x, fmap_dims = fmap_dims) return self.mlp_head(x[:, 0])