import torch from torch import nn from einops import rearrange, repeat from einops.layers.torch import Rearrange def pair(t): return t if isinstance(t, tuple) else (t, t) class ViT(nn.Module): def __init__(self, *, image_size, patch_size, num_classes, dim, transformer, pool = 'cls', channels = 3): super().__init__() image_size_h, image_size_w = pair(image_size) assert image_size_h % patch_size == 0 and image_size_w % patch_size == 0, 'image dimensions must be divisible by the patch size' assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)' num_patches = (image_size_h // patch_size) * (image_size_w // patch_size) patch_dim = channels * patch_size ** 2 self.to_patch_embedding = nn.Sequential( Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size), nn.LayerNorm(patch_dim), nn.Linear(patch_dim, dim), nn.LayerNorm(dim) ) self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) self.transformer = transformer self.pool = pool self.to_latent = nn.Identity() self.mlp_head = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_classes) ) def forward(self, img): x = self.to_patch_embedding(img) b, n, _ = x.shape cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b) x = torch.cat((cls_tokens, x), dim=1) x += self.pos_embedding[:, :(n + 1)] x = self.transformer(x) x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0] x = self.to_latent(x) return self.mlp_head(x)