import torch from torch import nn from torch.nn import Module, ModuleList from einops import rearrange, repeat, pack, unpack from einops.layers.torch import Rearrange # helpers def pair(t): return t if isinstance(t, tuple) else (t, t) def exists(v): return v is not None def divisible_by(num, den): return (num % den) == 0 def posemb_sincos_2d(h, w, dim, temperature: int = 10000, dtype = torch.float32): y, x = torch.meshgrid(torch.arange(h), torch.arange(w), indexing="ij") assert divisible_by(dim, 4), "feature dimension must be multiple of 4 for sincos emb" omega = torch.arange(dim // 4) / (dim // 4 - 1) omega = temperature ** -omega y = y.flatten()[:, None] * omega[None, :] x = x.flatten()[:, None] * omega[None, :] pe = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim=1) return pe.type(dtype) # classes def FeedForward(dim, hidden_dim): return nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, hidden_dim), nn.GELU(), nn.Linear(hidden_dim, dim), ) class Attention(Module): def __init__(self, dim, heads = 8, dim_head = 64): super().__init__() inner_dim = dim_head * heads self.heads = heads self.scale = dim_head ** -0.5 self.norm = nn.LayerNorm(dim) self.attend = nn.Softmax(dim = -1) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Linear(inner_dim, dim, bias = False) def forward(self, x): x = self.norm(x) qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale attn = self.attend(dots) out = torch.matmul(attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class Transformer(Module): def __init__(self, dim, depth, heads, dim_head, mlp_dim): super().__init__() self.depth = depth self.norm = nn.LayerNorm(dim) self.layers = ModuleList([]) for layer in range(1, depth + 1): latter_half = layer >= (depth / 2 + 1) self.layers.append(nn.ModuleList([ nn.Linear(dim * 2, dim) if latter_half else None, Attention(dim, heads = heads, dim_head = dim_head), FeedForward(dim, mlp_dim) ])) def forward(self, x): skips = [] for ind, (combine_skip, attn, ff) in enumerate(self.layers): layer = ind + 1 first_half = layer <= (self.depth / 2) if first_half: skips.append(x) if exists(combine_skip): skip = skips.pop() skip_and_x = torch.cat((skip, x), dim = -1) x = combine_skip(skip_and_x) x = attn(x) + x x = ff(x) + x assert len(skips) == 0 return self.norm(x) class SimpleUViT(Module): def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, num_register_tokens = 4, channels = 3, dim_head = 64): super().__init__() image_height, image_width = pair(image_size) patch_height, patch_width = pair(patch_size) assert divisible_by(image_height, patch_height) and divisible_by(image_width, patch_width), 'Image dimensions must be divisible by the patch size.' patch_dim = channels * patch_height * patch_width self.to_patch_embedding = nn.Sequential( Rearrange("b c (h p1) (w p2) -> b (h w) (p1 p2 c)", p1 = patch_height, p2 = patch_width), nn.LayerNorm(patch_dim), nn.Linear(patch_dim, dim), nn.LayerNorm(dim), ) pos_embedding = posemb_sincos_2d( h = image_height // patch_height, w = image_width // patch_width, dim = dim ) self.register_buffer('pos_embedding', pos_embedding, persistent = False) self.register_tokens = nn.Parameter(torch.randn(num_register_tokens, dim)) self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim) self.pool = "mean" self.to_latent = nn.Identity() self.linear_head = nn.Linear(dim, num_classes) def forward(self, img): batch, device = img.shape[0], img.device x = self.to_patch_embedding(img) x = x + self.pos_embedding.type(x.dtype) r = repeat(self.register_tokens, 'n d -> b n d', b = batch) x, ps = pack([x, r], 'b * d') x = self.transformer(x) x, _ = unpack(x, ps, 'b * d') x = x.mean(dim = 1) x = self.to_latent(x) return self.linear_head(x) # quick test on odd number of layers if __name__ == '__main__': v = SimpleUViT( image_size = 256, patch_size = 32, num_classes = 1000, dim = 1024, depth = 7, heads = 16, mlp_dim = 2048 ).cuda() img = torch.randn(2, 3, 256, 256).cuda() preds = v(img) assert preds.shape == (2, 1000)