import torch import torch.nn.functional as F from torch.nn.utils.rnn import pad_sequence from torch import nn, einsum from einops import rearrange, repeat from einops.layers.torch import Rearrange # helpers def exists(val): return val is not None def pair(t): return t if isinstance(t, tuple) else (t, t) # adaptive token sampling functions and classes def log(t, eps = 1e-6): return torch.log(t + eps) def sample_gumbel(shape, device, dtype, eps = 1e-6): u = torch.empty(shape, device = device, dtype = dtype).uniform_(0, 1) return -log(-log(u, eps), eps) def batched_index_select(values, indices, dim = 1): value_dims = values.shape[(dim + 1):] values_shape, indices_shape = map(lambda t: list(t.shape), (values, indices)) indices = indices[(..., *((None,) * len(value_dims)))] indices = indices.expand(*((-1,) * len(indices_shape)), *value_dims) value_expand_len = len(indices_shape) - (dim + 1) values = values[(*((slice(None),) * dim), *((None,) * value_expand_len), ...)] value_expand_shape = [-1] * len(values.shape) expand_slice = slice(dim, (dim + value_expand_len)) value_expand_shape[expand_slice] = indices.shape[expand_slice] values = values.expand(*value_expand_shape) dim += value_expand_len return values.gather(dim, indices) class AdaptiveTokenSampling(nn.Module): def __init__(self, output_num_tokens, eps = 1e-6): super().__init__() self.eps = eps self.output_num_tokens = output_num_tokens def forward(self, attn, value, mask): heads, output_num_tokens, eps, device, dtype = attn.shape[1], self.output_num_tokens, self.eps, attn.device, attn.dtype # first get the attention values for CLS token to all other tokens cls_attn = attn[..., 0, 1:] # calculate the norms of the values, for weighting the scores, as described in the paper value_norms = value[..., 1:, :].norm(dim = -1) # weigh the attention scores by the norm of the values, sum across all heads cls_attn = einsum('b h n, b h n -> b n', cls_attn, value_norms) # normalize to 1 normed_cls_attn = cls_attn / (cls_attn.sum(dim = -1, keepdim = True) + eps) # instead of using inverse transform sampling, going to invert the softmax and use gumbel-max sampling instead pseudo_logits = log(normed_cls_attn) # mask out pseudo logits for gumbel-max sampling mask_without_cls = mask[:, 1:] mask_value = -torch.finfo(attn.dtype).max / 2 pseudo_logits = pseudo_logits.masked_fill(~mask_without_cls, mask_value) # expand k times, k being the adaptive sampling number pseudo_logits = repeat(pseudo_logits, 'b n -> b k n', k = output_num_tokens) pseudo_logits = pseudo_logits + sample_gumbel(pseudo_logits.shape, device = device, dtype = dtype) # gumble-max and add one to reserve 0 for padding / mask sampled_token_ids = pseudo_logits.argmax(dim = -1) + 1 # calculate unique using torch.unique and then pad the sequence from the right unique_sampled_token_ids_list = [torch.unique(t, sorted = True) for t in torch.unbind(sampled_token_ids)] unique_sampled_token_ids = pad_sequence(unique_sampled_token_ids_list, batch_first = True) # calculate the new mask, based on the padding new_mask = unique_sampled_token_ids != 0 # CLS token never gets masked out (gets a value of True) new_mask = F.pad(new_mask, (1, 0), value = True) # prepend a 0 token id to keep the CLS attention scores unique_sampled_token_ids = F.pad(unique_sampled_token_ids, (1, 0), value = 0) expanded_unique_sampled_token_ids = repeat(unique_sampled_token_ids, 'b n -> b h n', h = heads) # gather the new attention scores new_attn = batched_index_select(attn, expanded_unique_sampled_token_ids, dim = 2) # return the sampled attention scores, new mask (denoting padding), as well as the sampled token indices (for the residual) return new_attn, new_mask, unique_sampled_token_ids # classes class FeedForward(nn.Module): def __init__(self, dim, hidden_dim, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, hidden_dim), nn.GELU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0., output_num_tokens = None): super().__init__() inner_dim = dim_head * heads self.heads = heads self.scale = dim_head ** -0.5 self.norm = nn.LayerNorm(dim) self.attend = nn.Softmax(dim = -1) self.dropout = nn.Dropout(dropout) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.output_num_tokens = output_num_tokens self.ats = AdaptiveTokenSampling(output_num_tokens) if exists(output_num_tokens) else None self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) def forward(self, x, *, mask): num_tokens = x.shape[1] x = self.norm(x) qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale if exists(mask): dots_mask = rearrange(mask, 'b i -> b 1 i 1') * rearrange(mask, 'b j -> b 1 1 j') mask_value = -torch.finfo(dots.dtype).max dots = dots.masked_fill(~dots_mask, mask_value) attn = self.attend(dots) attn = self.dropout(attn) sampled_token_ids = None # if adaptive token sampling is enabled # and number of tokens is greater than the number of output tokens if exists(self.output_num_tokens) and (num_tokens - 1) > self.output_num_tokens: attn, mask, sampled_token_ids = self.ats(attn, v, mask = mask) out = torch.matmul(attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out), mask, sampled_token_ids class Transformer(nn.Module): def __init__(self, dim, depth, max_tokens_per_depth, heads, dim_head, mlp_dim, dropout = 0.): super().__init__() assert len(max_tokens_per_depth) == depth, 'max_tokens_per_depth must be a tuple of length that is equal to the depth of the transformer' assert sorted(max_tokens_per_depth, reverse = True) == list(max_tokens_per_depth), 'max_tokens_per_depth must be in decreasing order' assert min(max_tokens_per_depth) > 0, 'max_tokens_per_depth must have at least 1 token at any layer' self.layers = nn.ModuleList([]) for _, output_num_tokens in zip(range(depth), max_tokens_per_depth): self.layers.append(nn.ModuleList([ Attention(dim, output_num_tokens = output_num_tokens, heads = heads, dim_head = dim_head, dropout = dropout), FeedForward(dim, mlp_dim, dropout = dropout) ])) def forward(self, x): b, n, device = *x.shape[:2], x.device # use mask to keep track of the paddings when sampling tokens # as the duplicates (when sampling) are just removed, as mentioned in the paper mask = torch.ones((b, n), device = device, dtype = torch.bool) token_ids = torch.arange(n, device = device) token_ids = repeat(token_ids, 'n -> b n', b = b) for attn, ff in self.layers: attn_out, mask, sampled_token_ids = attn(x, mask = mask) # when token sampling, one needs to then gather the residual tokens with the sampled token ids if exists(sampled_token_ids): x = batched_index_select(x, sampled_token_ids, dim = 1) token_ids = batched_index_select(token_ids, sampled_token_ids, dim = 1) x = x + attn_out x = ff(x) + x return x, token_ids class ViT(nn.Module): def __init__(self, *, image_size, patch_size, num_classes, dim, depth, max_tokens_per_depth, heads, mlp_dim, channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.): super().__init__() image_height, image_width = pair(image_size) patch_height, patch_width = pair(patch_size) assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' num_patches = (image_height // patch_height) * (image_width // patch_width) patch_dim = channels * patch_height * patch_width self.to_patch_embedding = nn.Sequential( Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width), nn.LayerNorm(patch_dim), nn.Linear(patch_dim, dim), nn.LayerNorm(dim) ) self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) self.dropout = nn.Dropout(emb_dropout) self.transformer = Transformer(dim, depth, max_tokens_per_depth, heads, dim_head, mlp_dim, dropout) self.mlp_head = nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, num_classes) ) def forward(self, img, return_sampled_token_ids = False): x = self.to_patch_embedding(img) b, n, _ = x.shape cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b) x = torch.cat((cls_tokens, x), dim=1) x += self.pos_embedding[:, :(n + 1)] x = self.dropout(x) x, token_ids = self.transformer(x) logits = self.mlp_head(x[:, 0]) if return_sampled_token_ids: # remove CLS token and decrement by 1 to make -1 the padding token_ids = token_ids[:, 1:] - 1 return logits, token_ids return logits