# Simpler Fast Vision Transformers with a Jumbo CLS Token # https://arxiv.org/abs/2502.15021 import torch from torch import nn from torch.nn import Module, ModuleList from einops import rearrange, repeat, reduce, pack, unpack from einops.layers.torch import Rearrange # helpers def pair(t): return t if isinstance(t, tuple) else (t, t) def divisible_by(num, den): return (num % den) == 0 def posemb_sincos_2d(h, w, dim, temperature: int = 10000, dtype = torch.float32): y, x = torch.meshgrid(torch.arange(h), torch.arange(w), indexing="ij") assert divisible_by(dim, 4), "feature dimension must be multiple of 4 for sincos emb" omega = torch.arange(dim // 4) / (dim // 4 - 1) omega = temperature ** -omega y = y.flatten()[:, None] * omega[None, :] x = x.flatten()[:, None] * omega[None, :] pos_emb = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim=1) return pos_emb.type(dtype) # classes def FeedForward(dim, mult = 4.): hidden_dim = int(dim * mult) return nn.Sequential( nn.LayerNorm(dim), nn.Linear(dim, hidden_dim), nn.GELU(), nn.Linear(hidden_dim, dim), ) class Attention(Module): def __init__(self, dim, heads = 8, dim_head = 64): super().__init__() inner_dim = dim_head * heads self.heads = heads self.scale = dim_head ** -0.5 self.norm = nn.LayerNorm(dim) self.attend = nn.Softmax(dim = -1) self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Linear(inner_dim, dim, bias = False) def forward(self, x): x = self.norm(x) qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale attn = self.attend(dots) out = torch.matmul(attn, v) out = rearrange(out, 'b h n d -> b n (h d)') return self.to_out(out) class JumboViT(Module): def __init__( self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, num_jumbo_cls = 1, # differing from paper, allow for multiple jumbo cls, so one could break it up into 2 jumbo cls tokens with 3x the dim, as an example jumbo_cls_k = 6, # they use a CLS token with this factor times the dimension - 6 was the value they settled on jumbo_ff_mult = 2, # expansion factor of the jumbo cls token feedforward channels = 3, dim_head = 64 ): super().__init__() image_height, image_width = pair(image_size) patch_height, patch_width = pair(patch_size) assert divisible_by(image_height, patch_height) and divisible_by(image_width, patch_width), 'Image dimensions must be divisible by the patch size.' patch_dim = channels * patch_height * patch_width self.to_patch_embedding = nn.Sequential( Rearrange("b c (h p1) (w p2) -> b (h w) (p1 p2 c)", p1 = patch_height, p2 = patch_width), nn.LayerNorm(patch_dim), nn.Linear(patch_dim, dim), nn.LayerNorm(dim), ) self.pos_embedding = posemb_sincos_2d( h = image_height // patch_height, w = image_width // patch_width, dim = dim, ) jumbo_cls_dim = dim * jumbo_cls_k self.jumbo_cls_token = nn.Parameter(torch.zeros(num_jumbo_cls, jumbo_cls_dim)) jumbo_cls_to_tokens = Rearrange('b n (k d) -> b (n k) d', k = jumbo_cls_k) self.jumbo_cls_to_tokens = jumbo_cls_to_tokens self.norm = nn.LayerNorm(dim) self.layers = ModuleList([]) # attention and feedforwards self.jumbo_ff = nn.Sequential( Rearrange('b (n k) d -> b n (k d)', k = jumbo_cls_k), FeedForward(jumbo_cls_dim, int(jumbo_cls_dim * jumbo_ff_mult)), # they use separate parameters for the jumbo feedforward, weight tied for parameter efficient jumbo_cls_to_tokens ) for _ in range(depth): self.layers.append(ModuleList([ Attention(dim, heads = heads, dim_head = dim_head), FeedForward(dim, mlp_dim), ])) self.to_latent = nn.Identity() self.linear_head = nn.Linear(dim, num_classes) def forward(self, img): batch, device = img.shape[0], img.device x = self.to_patch_embedding(img) # pos embedding pos_emb = self.pos_embedding.to(device, dtype = x.dtype) x = x + pos_emb # add cls tokens cls_tokens = repeat(self.jumbo_cls_token, 'nj d -> b nj d', b = batch) jumbo_tokens = self.jumbo_cls_to_tokens(cls_tokens) x, cls_packed_shape = pack([jumbo_tokens, x], 'b * d') # attention and feedforwards for layer, (attn, ff) in enumerate(self.layers, start = 1): is_last = layer == len(self.layers) x = attn(x) + x # jumbo feedforward jumbo_cls_tokens, x = unpack(x, cls_packed_shape, 'b * d') x = ff(x) + x jumbo_cls_tokens = self.jumbo_ff(jumbo_cls_tokens) + jumbo_cls_tokens if is_last: continue x, _ = pack([jumbo_cls_tokens, x], 'b * d') pooled = reduce(jumbo_cls_tokens, 'b n d -> b d', 'mean') # normalization and project to logits embed = self.norm(pooled) embed = self.to_latent(embed) logits = self.linear_head(embed) return logits # copy pasteable file if __name__ == '__main__': v = JumboViT( num_classes = 1000, image_size = 64, patch_size = 8, dim = 16, depth = 2, heads = 2, mlp_dim = 32, jumbo_cls_k = 3, jumbo_ff_mult = 2, ) images = torch.randn(1, 3, 64, 64) logits = v(images) assert logits.shape == (1, 1000)