Files
vit-pytorch/vit_pytorch/distill.py
2020-12-24 11:06:49 -08:00

91 lines
2.6 KiB
Python

import torch
import torch.nn.functional as F
from torch import nn
from vit_pytorch.vit_pytorch import ViT
from einops import rearrange, repeat
# helpers
def exists(val):
return val is not None
# classes
class DistillableViT(ViT):
def __init__(self, *args, **kwargs):
super(DistillableViT, self).__init__(*args, **kwargs)
self.dim = kwargs['dim']
self.num_classes = kwargs['num_classes']
def forward(self, img, distill_token, mask = None):
p = self.patch_size
x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p)
x = self.patch_to_embedding(x)
b, n, _ = x.shape
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
x = torch.cat((cls_tokens, x), dim = 1)
x += self.pos_embedding[:, :(n + 1)]
distill_tokens = repeat(distill_token, '() n d -> b n d', b = b)
x = torch.cat((x, distill_tokens), dim = 1)
x = self.dropout(x)
x = self.transformer(x, mask)
x, distill_tokens = x[:, :-1], x[:, -1]
x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]
x = self.to_latent(x)
return self.mlp_head(x), distill_tokens
class DistillWrapper(nn.Module):
def __init__(
self,
*,
teacher,
student,
temperature = 1.,
alpha = 0.5
):
super().__init__()
assert isinstance(student, DistillableViT), 'student must be a vision transformer'
self.teacher = teacher
self.student = student
dim = student.dim
num_classes = student.num_classes
self.temperature = temperature
self.alpha = alpha
self.distillation_token = nn.Parameter(torch.randn(1, 1, dim))
self.distill_mlp = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def forward(self, img, labels, temperature = None, **kwargs):
b, *_, alpha = *img.shape, self.alpha
T = temperature if exists(temperature) else self.temperature
with torch.no_grad():
teacher_logits = self.teacher(img)
student_logits, distill_tokens = self.student(img, distill_token = self.distillation_token, **kwargs)
distill_logits = self.distill_mlp(distill_tokens)
loss = F.cross_entropy(student_logits, labels)
distill_loss = F.kl_div(
F.log_softmax(distill_logits / T, dim = -1),
F.softmax(teacher_logits / T, dim = -1).detach(),
reduction = 'batchmean')
distill_loss *= T ** 2
return loss * alpha + distill_loss * (1 - alpha)