Files
vit-pytorch/vit_pytorch/jumbo_vit.py

202 lines
5.8 KiB
Python

import torch
from torch import nn
from torch.nn import Module, ModuleList
from einops import rearrange, repeat, reduce, pack, unpack
from einops.layers.torch import Rearrange
# helpers
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def divisible_by(num, den):
return (num % den) == 0
def posemb_sincos_2d(h, w, dim, temperature: int = 10000, dtype = torch.float32):
y, x = torch.meshgrid(torch.arange(h), torch.arange(w), indexing="ij")
assert divisible_by(dim, 4), "feature dimension must be multiple of 4 for sincos emb"
omega = torch.arange(dim // 4) / (dim // 4 - 1)
omega = temperature ** -omega
y = y.flatten()[:, None] * omega[None, :]
x = x.flatten()[:, None] * omega[None, :]
pos_emb = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim=1)
return pos_emb.type(dtype)
# classes
def FeedForward(dim, mult = 4.):
hidden_dim = int(dim * mult)
return nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, dim),
)
class Attention(Module):
def __init__(self, dim, heads = 8, dim_head = 64):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Linear(inner_dim, dim, bias = False)
def forward(self, x):
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class JumboViT(Module):
def __init__(
self,
*,
image_size,
patch_size,
num_classes,
dim,
depth,
heads,
mlp_dim,
num_jumbo_cls = 1, # differing from paper, allow for multiple jumbo cls, so one could break it up into 2 jumbo cls tokens with 3x the dim, as an example
jumbo_cls_k = 6, # they use a CLS token with this factor times the dimension - 6 was the value they settled on
jumbo_ff_mult = 2, # expansion factor of the jumbo cls token feedforward
channels = 3,
dim_head = 64
):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
assert divisible_by(image_height, patch_height) and divisible_by(image_width, patch_width), 'Image dimensions must be divisible by the patch size.'
patch_dim = channels * patch_height * patch_width
self.to_patch_embedding = nn.Sequential(
Rearrange("b c (h p1) (w p2) -> b (h w) (p1 p2 c)", p1 = patch_height, p2 = patch_width),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim),
)
self.pos_embedding = posemb_sincos_2d(
h = image_height // patch_height,
w = image_width // patch_width,
dim = dim,
)
jumbo_cls_dim = dim * jumbo_cls_k
self.jumbo_cls_token = nn.Parameter(torch.zeros(num_jumbo_cls, jumbo_cls_dim))
jumbo_cls_to_tokens = Rearrange('b n (k d) -> b (n k) d', k = jumbo_cls_k)
self.jumbo_cls_to_tokens = jumbo_cls_to_tokens
self.norm = nn.LayerNorm(dim)
self.layers = ModuleList([])
# attention and feedforwards
self.jumbo_ff = nn.Sequential(
Rearrange('b (n k) d -> b n (k d)', k = jumbo_cls_k),
FeedForward(jumbo_cls_dim, int(jumbo_cls_dim * jumbo_ff_mult)), # they use separate parameters for the jumbo feedforward, weight tied for parameter efficient
jumbo_cls_to_tokens
)
for _ in range(depth):
self.layers.append(ModuleList([
Attention(dim, heads = heads, dim_head = dim_head),
FeedForward(dim, mlp_dim),
]))
self.to_latent = nn.Identity()
self.linear_head = nn.Linear(dim, num_classes)
def forward(self, img):
batch, device = img.shape[0], img.device
x = self.to_patch_embedding(img)
# pos embedding
pos_emb = self.pos_embedding.to(device, dtype = x.dtype)
x = x + pos_emb
# add cls tokens
cls_tokens = repeat(self.jumbo_cls_token, 'nj d -> b nj d', b = batch)
jumbo_tokens = self.jumbo_cls_to_tokens(cls_tokens)
x, cls_packed_shape = pack([jumbo_tokens, x], 'b * d')
# attention and feedforwards
for layer, (attn, ff) in enumerate(self.layers, start = 1):
is_last = layer == len(self.layers)
x = attn(x) + x
# jumbo feedforward
jumbo_cls_tokens, x = unpack(x, cls_packed_shape, 'b * d')
x = ff(x) + x
jumbo_cls_tokens = self.jumbo_ff(jumbo_cls_tokens) + jumbo_cls_tokens
if is_last:
continue
x, _ = pack([jumbo_cls_tokens, x], 'b * d')
pooled = reduce(jumbo_cls_tokens, 'b n d -> b d', 'mean')
# normalization and project to logits
embed = self.norm(pooled)
embed = self.to_latent(embed)
logits = self.linear_head(embed)
return logits
# copy pasteable file
if __name__ == '__main__':
v = JumboViT(
num_classes = 1000,
image_size = 64,
patch_size = 8,
dim = 16,
depth = 2,
heads = 2,
mlp_dim = 32,
jumbo_cls_k = 3,
jumbo_ff_mult = 2,
)
images = torch.randn(1, 3, 64, 64)
logits = v(images)
assert logits.shape == (1, 1000)