mirror of
https://github.com/lucidrains/vit-pytorch.git
synced 2025-12-30 08:02:29 +00:00
202 lines
5.8 KiB
Python
202 lines
5.8 KiB
Python
import torch
|
|
from torch import nn
|
|
from torch.nn import Module, ModuleList
|
|
|
|
from einops import rearrange, repeat, reduce, pack, unpack
|
|
from einops.layers.torch import Rearrange
|
|
|
|
# helpers
|
|
|
|
def pair(t):
|
|
return t if isinstance(t, tuple) else (t, t)
|
|
|
|
def divisible_by(num, den):
|
|
return (num % den) == 0
|
|
|
|
def posemb_sincos_2d(h, w, dim, temperature: int = 10000, dtype = torch.float32):
|
|
y, x = torch.meshgrid(torch.arange(h), torch.arange(w), indexing="ij")
|
|
assert divisible_by(dim, 4), "feature dimension must be multiple of 4 for sincos emb"
|
|
|
|
omega = torch.arange(dim // 4) / (dim // 4 - 1)
|
|
omega = temperature ** -omega
|
|
|
|
y = y.flatten()[:, None] * omega[None, :]
|
|
x = x.flatten()[:, None] * omega[None, :]
|
|
pos_emb = torch.cat((x.sin(), x.cos(), y.sin(), y.cos()), dim=1)
|
|
|
|
return pos_emb.type(dtype)
|
|
|
|
# classes
|
|
|
|
def FeedForward(dim, mult = 4.):
|
|
hidden_dim = int(dim * mult)
|
|
return nn.Sequential(
|
|
nn.LayerNorm(dim),
|
|
nn.Linear(dim, hidden_dim),
|
|
nn.GELU(),
|
|
nn.Linear(hidden_dim, dim),
|
|
)
|
|
|
|
class Attention(Module):
|
|
def __init__(self, dim, heads = 8, dim_head = 64):
|
|
super().__init__()
|
|
inner_dim = dim_head * heads
|
|
self.heads = heads
|
|
self.scale = dim_head ** -0.5
|
|
self.norm = nn.LayerNorm(dim)
|
|
|
|
self.attend = nn.Softmax(dim = -1)
|
|
|
|
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
|
self.to_out = nn.Linear(inner_dim, dim, bias = False)
|
|
|
|
def forward(self, x):
|
|
x = self.norm(x)
|
|
|
|
qkv = self.to_qkv(x).chunk(3, dim = -1)
|
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
|
|
|
|
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
|
|
|
|
attn = self.attend(dots)
|
|
|
|
out = torch.matmul(attn, v)
|
|
out = rearrange(out, 'b h n d -> b n (h d)')
|
|
return self.to_out(out)
|
|
|
|
class JumboViT(Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
image_size,
|
|
patch_size,
|
|
num_classes,
|
|
dim,
|
|
depth,
|
|
heads,
|
|
mlp_dim,
|
|
num_jumbo_cls = 1, # differing from paper, allow for multiple jumbo cls, so one could break it up into 2 jumbo cls tokens with 3x the dim, as an example
|
|
jumbo_cls_k = 6, # they use a CLS token with this factor times the dimension - 6 was the value they settled on
|
|
jumbo_ff_mult = 2, # expansion factor of the jumbo cls token feedforward
|
|
channels = 3,
|
|
dim_head = 64
|
|
):
|
|
super().__init__()
|
|
image_height, image_width = pair(image_size)
|
|
patch_height, patch_width = pair(patch_size)
|
|
|
|
assert divisible_by(image_height, patch_height) and divisible_by(image_width, patch_width), 'Image dimensions must be divisible by the patch size.'
|
|
|
|
patch_dim = channels * patch_height * patch_width
|
|
|
|
self.to_patch_embedding = nn.Sequential(
|
|
Rearrange("b c (h p1) (w p2) -> b (h w) (p1 p2 c)", p1 = patch_height, p2 = patch_width),
|
|
nn.LayerNorm(patch_dim),
|
|
nn.Linear(patch_dim, dim),
|
|
nn.LayerNorm(dim),
|
|
)
|
|
|
|
self.pos_embedding = posemb_sincos_2d(
|
|
h = image_height // patch_height,
|
|
w = image_width // patch_width,
|
|
dim = dim,
|
|
)
|
|
|
|
jumbo_cls_dim = dim * jumbo_cls_k
|
|
|
|
self.jumbo_cls_token = nn.Parameter(torch.zeros(num_jumbo_cls, jumbo_cls_dim))
|
|
|
|
jumbo_cls_to_tokens = Rearrange('b n (k d) -> b (n k) d', k = jumbo_cls_k)
|
|
self.jumbo_cls_to_tokens = jumbo_cls_to_tokens
|
|
|
|
self.norm = nn.LayerNorm(dim)
|
|
self.layers = ModuleList([])
|
|
|
|
# attention and feedforwards
|
|
|
|
self.jumbo_ff = nn.Sequential(
|
|
Rearrange('b (n k) d -> b n (k d)', k = jumbo_cls_k),
|
|
FeedForward(jumbo_cls_dim, int(jumbo_cls_dim * jumbo_ff_mult)), # they use separate parameters for the jumbo feedforward, weight tied for parameter efficient
|
|
jumbo_cls_to_tokens
|
|
)
|
|
|
|
for _ in range(depth):
|
|
self.layers.append(ModuleList([
|
|
Attention(dim, heads = heads, dim_head = dim_head),
|
|
FeedForward(dim, mlp_dim),
|
|
]))
|
|
|
|
self.to_latent = nn.Identity()
|
|
|
|
self.linear_head = nn.Linear(dim, num_classes)
|
|
|
|
def forward(self, img):
|
|
|
|
batch, device = img.shape[0], img.device
|
|
|
|
x = self.to_patch_embedding(img)
|
|
|
|
# pos embedding
|
|
|
|
pos_emb = self.pos_embedding.to(device, dtype = x.dtype)
|
|
|
|
x = x + pos_emb
|
|
|
|
# add cls tokens
|
|
|
|
cls_tokens = repeat(self.jumbo_cls_token, 'nj d -> b nj d', b = batch)
|
|
|
|
jumbo_tokens = self.jumbo_cls_to_tokens(cls_tokens)
|
|
|
|
x, cls_packed_shape = pack([jumbo_tokens, x], 'b * d')
|
|
|
|
# attention and feedforwards
|
|
|
|
for layer, (attn, ff) in enumerate(self.layers, start = 1):
|
|
is_last = layer == len(self.layers)
|
|
|
|
x = attn(x) + x
|
|
x = ff(x) + x
|
|
|
|
# jumbo feedforward
|
|
|
|
jumbo_cls_tokens, x = unpack(x, cls_packed_shape, 'b * d')
|
|
|
|
jumbo_cls_tokens = self.jumbo_ff(jumbo_cls_tokens) + jumbo_cls_tokens
|
|
|
|
if is_last:
|
|
continue
|
|
|
|
x, _ = pack([jumbo_cls_tokens, x], 'b * d')
|
|
|
|
pooled = reduce(jumbo_cls_tokens, 'b n d -> b d', 'mean')
|
|
|
|
# normalization and project to logits
|
|
|
|
embed = self.norm(pooled)
|
|
|
|
embed = self.to_latent(embed)
|
|
logits = self.linear_head(embed)
|
|
return logits
|
|
|
|
# copy pasteable file
|
|
|
|
if __name__ == '__main__':
|
|
|
|
v = JumboViT(
|
|
num_classes = 1000,
|
|
image_size = 64,
|
|
patch_size = 8,
|
|
dim = 16,
|
|
depth = 2,
|
|
heads = 2,
|
|
mlp_dim = 32,
|
|
jumbo_cls_k = 3,
|
|
jumbo_ff_mult = 2,
|
|
)
|
|
|
|
images = torch.randn(1, 3, 64, 64)
|
|
|
|
logits = v(images)
|
|
assert logits.shape == (1, 1000)
|