mirror of
https://github.com/lucidrains/vit-pytorch.git
synced 2025-12-30 08:02:29 +00:00
126 lines
3.6 KiB
Python
126 lines
3.6 KiB
Python
import torch
|
|
from torch import nn
|
|
|
|
from einops import rearrange
|
|
from einops.layers.torch import Rearrange
|
|
|
|
# helpers
|
|
|
|
def posemb_sincos_1d(patches, temperature = 10000, dtype = torch.float32):
|
|
_, n, dim, device, dtype = *patches.shape, patches.device, patches.dtype
|
|
|
|
n = torch.arange(n, device = device)
|
|
assert (dim % 2) == 0, 'feature dimension must be multiple of 2 for sincos emb'
|
|
omega = torch.arange(dim // 2, device = device) / (dim // 2 - 1)
|
|
omega = 1. / (temperature ** omega)
|
|
|
|
n = n.flatten()[:, None] * omega[None, :]
|
|
pe = torch.cat((n.sin(), n.cos()), dim = 1)
|
|
return pe.type(dtype)
|
|
|
|
# classes
|
|
|
|
class FeedForward(nn.Module):
|
|
def __init__(self, dim, hidden_dim):
|
|
super().__init__()
|
|
self.net = nn.Sequential(
|
|
nn.LayerNorm(dim),
|
|
nn.Linear(dim, hidden_dim),
|
|
nn.GELU(),
|
|
nn.Linear(hidden_dim, dim),
|
|
)
|
|
def forward(self, x):
|
|
return self.net(x)
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(self, dim, heads = 8, dim_head = 64):
|
|
super().__init__()
|
|
inner_dim = dim_head * heads
|
|
self.heads = heads
|
|
self.scale = dim_head ** -0.5
|
|
self.norm = nn.LayerNorm(dim)
|
|
|
|
self.attend = nn.Softmax(dim = -1)
|
|
|
|
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
|
|
self.to_out = nn.Linear(inner_dim, dim, bias = False)
|
|
|
|
def forward(self, x):
|
|
x = self.norm(x)
|
|
|
|
qkv = self.to_qkv(x).chunk(3, dim = -1)
|
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
|
|
|
|
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
|
|
|
|
attn = self.attend(dots)
|
|
|
|
out = torch.matmul(attn, v)
|
|
out = rearrange(out, 'b h n d -> b n (h d)')
|
|
return self.to_out(out)
|
|
|
|
class Transformer(nn.Module):
|
|
def __init__(self, dim, depth, heads, dim_head, mlp_dim):
|
|
super().__init__()
|
|
self.layers = nn.ModuleList([])
|
|
for _ in range(depth):
|
|
self.layers.append(nn.ModuleList([
|
|
Attention(dim, heads = heads, dim_head = dim_head),
|
|
FeedForward(dim, mlp_dim)
|
|
]))
|
|
def forward(self, x):
|
|
for attn, ff in self.layers:
|
|
x = attn(x) + x
|
|
x = ff(x) + x
|
|
return x
|
|
|
|
class SimpleViT(nn.Module):
|
|
def __init__(self, *, seq_len, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3, dim_head = 64):
|
|
super().__init__()
|
|
|
|
assert seq_len % patch_size == 0
|
|
|
|
num_patches = seq_len // patch_size
|
|
patch_dim = channels * patch_size
|
|
|
|
self.to_patch_embedding = nn.Sequential(
|
|
Rearrange('b c (n p) -> b n (p c)', p = patch_size),
|
|
nn.Linear(patch_dim, dim),
|
|
)
|
|
|
|
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim)
|
|
|
|
self.to_latent = nn.Identity()
|
|
self.linear_head = nn.Sequential(
|
|
nn.LayerNorm(dim),
|
|
nn.Linear(dim, num_classes)
|
|
)
|
|
|
|
def forward(self, series):
|
|
*_, n, dtype = *series.shape, series.dtype
|
|
|
|
x = self.to_patch_embedding(series)
|
|
pe = posemb_sincos_1d(x)
|
|
x = rearrange(x, 'b ... d -> b (...) d') + pe
|
|
|
|
x = self.transformer(x)
|
|
x = x.mean(dim = 1)
|
|
|
|
x = self.to_latent(x)
|
|
return self.linear_head(x)
|
|
|
|
if __name__ == '__main__':
|
|
|
|
v = SimpleViT(
|
|
seq_len = 256,
|
|
patch_size = 16,
|
|
num_classes = 1000,
|
|
dim = 1024,
|
|
depth = 6,
|
|
heads = 8,
|
|
mlp_dim = 2048
|
|
)
|
|
|
|
time_series = torch.randn(4, 3, 256)
|
|
logits = v(time_series) # (4, 1000)
|