mirror of
https://github.com/lucidrains/vit-pytorch.git
synced 2025-12-30 08:02:29 +00:00
276 lines
9.0 KiB
Python
276 lines
9.0 KiB
Python
import torch
|
|
from torch import nn, einsum
|
|
import torch.nn.functional as F
|
|
|
|
from einops import rearrange, repeat
|
|
from einops.layers.torch import Rearrange
|
|
|
|
# helpers
|
|
|
|
def exists(val):
|
|
return val is not None
|
|
|
|
def default(val, d):
|
|
return val if exists(val) else d
|
|
|
|
# pre-layernorm
|
|
|
|
class PreNorm(nn.Module):
|
|
def __init__(self, dim, fn):
|
|
super().__init__()
|
|
self.norm = nn.LayerNorm(dim)
|
|
self.fn = fn
|
|
def forward(self, x, **kwargs):
|
|
return self.fn(self.norm(x), **kwargs)
|
|
|
|
# feedforward
|
|
|
|
class FeedForward(nn.Module):
|
|
def __init__(self, dim, hidden_dim, dropout = 0.):
|
|
super().__init__()
|
|
self.net = nn.Sequential(
|
|
nn.Linear(dim, hidden_dim),
|
|
nn.GELU(),
|
|
nn.Dropout(dropout),
|
|
nn.Linear(hidden_dim, dim),
|
|
nn.Dropout(dropout)
|
|
)
|
|
def forward(self, x):
|
|
return self.net(x)
|
|
|
|
# attention
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
|
|
super().__init__()
|
|
inner_dim = dim_head * heads
|
|
self.heads = heads
|
|
self.scale = dim_head ** -0.5
|
|
|
|
self.attend = nn.Softmax(dim = -1)
|
|
self.dropout = nn.Dropout(dropout)
|
|
|
|
self.to_q = nn.Linear(dim, inner_dim, bias = False)
|
|
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
|
|
|
|
self.to_out = nn.Sequential(
|
|
nn.Linear(inner_dim, dim),
|
|
nn.Dropout(dropout)
|
|
)
|
|
|
|
def forward(self, x, context = None, kv_include_self = False):
|
|
b, n, _, h = *x.shape, self.heads
|
|
context = default(context, x)
|
|
|
|
if kv_include_self:
|
|
context = torch.cat((x, context), dim = 1) # cross attention requires CLS token includes itself as key / value
|
|
|
|
qkv = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1))
|
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)
|
|
|
|
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
|
|
|
|
attn = self.attend(dots)
|
|
attn = self.dropout(attn)
|
|
|
|
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
|
out = rearrange(out, 'b h n d -> b n (h d)')
|
|
return self.to_out(out)
|
|
|
|
# transformer encoder, for small and large patches
|
|
|
|
class Transformer(nn.Module):
|
|
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
|
|
super().__init__()
|
|
self.layers = nn.ModuleList([])
|
|
self.norm = nn.LayerNorm(dim)
|
|
for _ in range(depth):
|
|
self.layers.append(nn.ModuleList([
|
|
PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)),
|
|
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
|
|
]))
|
|
|
|
def forward(self, x):
|
|
for attn, ff in self.layers:
|
|
x = attn(x) + x
|
|
x = ff(x) + x
|
|
return self.norm(x)
|
|
|
|
# projecting CLS tokens, in the case that small and large patch tokens have different dimensions
|
|
|
|
class ProjectInOut(nn.Module):
|
|
def __init__(self, dim_in, dim_out, fn):
|
|
super().__init__()
|
|
self.fn = fn
|
|
|
|
need_projection = dim_in != dim_out
|
|
self.project_in = nn.Linear(dim_in, dim_out) if need_projection else nn.Identity()
|
|
self.project_out = nn.Linear(dim_out, dim_in) if need_projection else nn.Identity()
|
|
|
|
def forward(self, x, *args, **kwargs):
|
|
x = self.project_in(x)
|
|
x = self.fn(x, *args, **kwargs)
|
|
x = self.project_out(x)
|
|
return x
|
|
|
|
# cross attention transformer
|
|
|
|
class CrossTransformer(nn.Module):
|
|
def __init__(self, sm_dim, lg_dim, depth, heads, dim_head, dropout):
|
|
super().__init__()
|
|
self.layers = nn.ModuleList([])
|
|
for _ in range(depth):
|
|
self.layers.append(nn.ModuleList([
|
|
ProjectInOut(sm_dim, lg_dim, PreNorm(lg_dim, Attention(lg_dim, heads = heads, dim_head = dim_head, dropout = dropout))),
|
|
ProjectInOut(lg_dim, sm_dim, PreNorm(sm_dim, Attention(sm_dim, heads = heads, dim_head = dim_head, dropout = dropout)))
|
|
]))
|
|
|
|
def forward(self, sm_tokens, lg_tokens):
|
|
(sm_cls, sm_patch_tokens), (lg_cls, lg_patch_tokens) = map(lambda t: (t[:, :1], t[:, 1:]), (sm_tokens, lg_tokens))
|
|
|
|
for sm_attend_lg, lg_attend_sm in self.layers:
|
|
sm_cls = sm_attend_lg(sm_cls, context = lg_patch_tokens, kv_include_self = True) + sm_cls
|
|
lg_cls = lg_attend_sm(lg_cls, context = sm_patch_tokens, kv_include_self = True) + lg_cls
|
|
|
|
sm_tokens = torch.cat((sm_cls, sm_patch_tokens), dim = 1)
|
|
lg_tokens = torch.cat((lg_cls, lg_patch_tokens), dim = 1)
|
|
return sm_tokens, lg_tokens
|
|
|
|
# multi-scale encoder
|
|
|
|
class MultiScaleEncoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
depth,
|
|
sm_dim,
|
|
lg_dim,
|
|
sm_enc_params,
|
|
lg_enc_params,
|
|
cross_attn_heads,
|
|
cross_attn_depth,
|
|
cross_attn_dim_head = 64,
|
|
dropout = 0.
|
|
):
|
|
super().__init__()
|
|
self.layers = nn.ModuleList([])
|
|
for _ in range(depth):
|
|
self.layers.append(nn.ModuleList([
|
|
Transformer(dim = sm_dim, dropout = dropout, **sm_enc_params),
|
|
Transformer(dim = lg_dim, dropout = dropout, **lg_enc_params),
|
|
CrossTransformer(sm_dim = sm_dim, lg_dim = lg_dim, depth = cross_attn_depth, heads = cross_attn_heads, dim_head = cross_attn_dim_head, dropout = dropout)
|
|
]))
|
|
|
|
def forward(self, sm_tokens, lg_tokens):
|
|
for sm_enc, lg_enc, cross_attend in self.layers:
|
|
sm_tokens, lg_tokens = sm_enc(sm_tokens), lg_enc(lg_tokens)
|
|
sm_tokens, lg_tokens = cross_attend(sm_tokens, lg_tokens)
|
|
|
|
return sm_tokens, lg_tokens
|
|
|
|
# patch-based image to token embedder
|
|
|
|
class ImageEmbedder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
dim,
|
|
image_size,
|
|
patch_size,
|
|
dropout = 0.
|
|
):
|
|
super().__init__()
|
|
assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.'
|
|
num_patches = (image_size // patch_size) ** 2
|
|
patch_dim = 3 * patch_size ** 2
|
|
|
|
self.to_patch_embedding = nn.Sequential(
|
|
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size),
|
|
nn.LayerNorm(patch_dim),
|
|
nn.Linear(patch_dim, dim),
|
|
nn.LayerNorm(dim)
|
|
)
|
|
|
|
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
|
|
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
|
|
self.dropout = nn.Dropout(dropout)
|
|
|
|
def forward(self, img):
|
|
x = self.to_patch_embedding(img)
|
|
b, n, _ = x.shape
|
|
|
|
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
|
|
x = torch.cat((cls_tokens, x), dim=1)
|
|
x += self.pos_embedding[:, :(n + 1)]
|
|
|
|
return self.dropout(x)
|
|
|
|
# cross ViT class
|
|
|
|
class CrossViT(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
image_size,
|
|
num_classes,
|
|
sm_dim,
|
|
lg_dim,
|
|
sm_patch_size = 12,
|
|
sm_enc_depth = 1,
|
|
sm_enc_heads = 8,
|
|
sm_enc_mlp_dim = 2048,
|
|
sm_enc_dim_head = 64,
|
|
lg_patch_size = 16,
|
|
lg_enc_depth = 4,
|
|
lg_enc_heads = 8,
|
|
lg_enc_mlp_dim = 2048,
|
|
lg_enc_dim_head = 64,
|
|
cross_attn_depth = 2,
|
|
cross_attn_heads = 8,
|
|
cross_attn_dim_head = 64,
|
|
depth = 3,
|
|
dropout = 0.1,
|
|
emb_dropout = 0.1
|
|
):
|
|
super().__init__()
|
|
self.sm_image_embedder = ImageEmbedder(dim = sm_dim, image_size = image_size, patch_size = sm_patch_size, dropout = emb_dropout)
|
|
self.lg_image_embedder = ImageEmbedder(dim = lg_dim, image_size = image_size, patch_size = lg_patch_size, dropout = emb_dropout)
|
|
|
|
self.multi_scale_encoder = MultiScaleEncoder(
|
|
depth = depth,
|
|
sm_dim = sm_dim,
|
|
lg_dim = lg_dim,
|
|
cross_attn_heads = cross_attn_heads,
|
|
cross_attn_dim_head = cross_attn_dim_head,
|
|
cross_attn_depth = cross_attn_depth,
|
|
sm_enc_params = dict(
|
|
depth = sm_enc_depth,
|
|
heads = sm_enc_heads,
|
|
mlp_dim = sm_enc_mlp_dim,
|
|
dim_head = sm_enc_dim_head
|
|
),
|
|
lg_enc_params = dict(
|
|
depth = lg_enc_depth,
|
|
heads = lg_enc_heads,
|
|
mlp_dim = lg_enc_mlp_dim,
|
|
dim_head = lg_enc_dim_head
|
|
),
|
|
dropout = dropout
|
|
)
|
|
|
|
self.sm_mlp_head = nn.Sequential(nn.LayerNorm(sm_dim), nn.Linear(sm_dim, num_classes))
|
|
self.lg_mlp_head = nn.Sequential(nn.LayerNorm(lg_dim), nn.Linear(lg_dim, num_classes))
|
|
|
|
def forward(self, img):
|
|
sm_tokens = self.sm_image_embedder(img)
|
|
lg_tokens = self.lg_image_embedder(img)
|
|
|
|
sm_tokens, lg_tokens = self.multi_scale_encoder(sm_tokens, lg_tokens)
|
|
|
|
sm_cls, lg_cls = map(lambda t: t[:, 0], (sm_tokens, lg_tokens))
|
|
|
|
sm_logits = self.sm_mlp_head(sm_cls)
|
|
lg_logits = self.lg_mlp_head(lg_cls)
|
|
|
|
return sm_logits + lg_logits
|