mirror of
https://github.com/lucidrains/vit-pytorch.git
synced 2025-12-30 08:02:29 +00:00
182 lines
5.7 KiB
Python
182 lines
5.7 KiB
Python
from functools import partial
|
|
import torch
|
|
from torch import nn, einsum
|
|
|
|
from einops import rearrange
|
|
from einops.layers.torch import Rearrange, Reduce
|
|
|
|
# helpers
|
|
|
|
def cast_tuple(val, depth):
|
|
return val if isinstance(val, tuple) else ((val,) * depth)
|
|
|
|
# classes
|
|
|
|
class LayerNorm(nn.Module):
|
|
def __init__(self, dim, eps = 1e-5):
|
|
super().__init__()
|
|
self.eps = eps
|
|
self.g = nn.Parameter(torch.ones(1, dim, 1, 1))
|
|
self.b = nn.Parameter(torch.zeros(1, dim, 1, 1))
|
|
|
|
def forward(self, x):
|
|
var = torch.var(x, dim = 1, unbiased = False, keepdim = True)
|
|
mean = torch.mean(x, dim = 1, keepdim = True)
|
|
return (x - mean) / (var + self.eps).sqrt() * self.g + self.b
|
|
|
|
class PreNorm(nn.Module):
|
|
def __init__(self, dim, fn):
|
|
super().__init__()
|
|
self.norm = LayerNorm(dim)
|
|
self.fn = fn
|
|
|
|
def forward(self, x, **kwargs):
|
|
return self.fn(self.norm(x), **kwargs)
|
|
|
|
class FeedForward(nn.Module):
|
|
def __init__(self, dim, mlp_mult = 4, dropout = 0.):
|
|
super().__init__()
|
|
self.net = nn.Sequential(
|
|
nn.Conv2d(dim, dim * mlp_mult, 1),
|
|
nn.GELU(),
|
|
nn.Dropout(dropout),
|
|
nn.Conv2d(dim * mlp_mult, dim, 1),
|
|
nn.Dropout(dropout)
|
|
)
|
|
def forward(self, x):
|
|
return self.net(x)
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(self, dim, heads = 8, dropout = 0.):
|
|
super().__init__()
|
|
dim_head = dim // heads
|
|
inner_dim = dim_head * heads
|
|
self.heads = heads
|
|
self.scale = dim_head ** -0.5
|
|
|
|
self.attend = nn.Softmax(dim = -1)
|
|
self.to_qkv = nn.Conv2d(dim, inner_dim * 3, 1, bias = False)
|
|
|
|
self.to_out = nn.Sequential(
|
|
nn.Conv2d(inner_dim, dim, 1),
|
|
nn.Dropout(dropout)
|
|
)
|
|
|
|
def forward(self, x):
|
|
b, c, h, w, heads = *x.shape, self.heads
|
|
|
|
qkv = self.to_qkv(x).chunk(3, dim = 1)
|
|
q, k, v = map(lambda t: rearrange(t, 'b (h d) x y -> b h (x y) d', h = heads), qkv)
|
|
|
|
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
|
|
|
|
attn = self.attend(dots)
|
|
|
|
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
|
out = rearrange(out, 'b h (x y) d -> b (h d) x y', x = h, y = w)
|
|
return self.to_out(out)
|
|
|
|
def Aggregate(dim, dim_out):
|
|
return nn.Sequential(
|
|
nn.Conv2d(dim, dim_out, 3, padding = 1),
|
|
LayerNorm(dim_out),
|
|
nn.MaxPool2d(3, stride = 2, padding = 1)
|
|
)
|
|
|
|
class Transformer(nn.Module):
|
|
def __init__(self, dim, seq_len, depth, heads, mlp_mult, dropout = 0.):
|
|
super().__init__()
|
|
self.layers = nn.ModuleList([])
|
|
self.pos_emb = nn.Parameter(torch.randn(seq_len))
|
|
|
|
for _ in range(depth):
|
|
self.layers.append(nn.ModuleList([
|
|
PreNorm(dim, Attention(dim, heads = heads, dropout = dropout)),
|
|
PreNorm(dim, FeedForward(dim, mlp_mult, dropout = dropout))
|
|
]))
|
|
def forward(self, x):
|
|
*_, h, w = x.shape
|
|
|
|
pos_emb = self.pos_emb[:(h * w)]
|
|
pos_emb = rearrange(pos_emb, '(h w) -> () () h w', h = h, w = w)
|
|
x = x + pos_emb
|
|
|
|
for attn, ff in self.layers:
|
|
x = attn(x) + x
|
|
x = ff(x) + x
|
|
return x
|
|
|
|
class NesT(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
image_size,
|
|
patch_size,
|
|
num_classes,
|
|
dim,
|
|
heads,
|
|
num_hierarchies,
|
|
block_repeats,
|
|
mlp_mult = 4,
|
|
channels = 3,
|
|
dim_head = 64,
|
|
dropout = 0.
|
|
):
|
|
super().__init__()
|
|
assert (image_size % patch_size) == 0, 'Image dimensions must be divisible by the patch size.'
|
|
num_patches = (image_size // patch_size) ** 2
|
|
patch_dim = channels * patch_size ** 2
|
|
fmap_size = image_size // patch_size
|
|
blocks = 2 ** (num_hierarchies - 1)
|
|
|
|
seq_len = (fmap_size // blocks) ** 2 # sequence length is held constant across heirarchy
|
|
hierarchies = list(reversed(range(num_hierarchies)))
|
|
mults = [2 ** i for i in reversed(hierarchies)]
|
|
|
|
layer_heads = list(map(lambda t: t * heads, mults))
|
|
layer_dims = list(map(lambda t: t * dim, mults))
|
|
last_dim = layer_dims[-1]
|
|
|
|
layer_dims = [*layer_dims, layer_dims[-1]]
|
|
dim_pairs = zip(layer_dims[:-1], layer_dims[1:])
|
|
|
|
self.to_patch_embedding = nn.Sequential(
|
|
Rearrange('b c (h p1) (w p2) -> b (p1 p2 c) h w', p1 = patch_size, p2 = patch_size),
|
|
nn.Conv2d(patch_dim, layer_dims[0], 1),
|
|
)
|
|
|
|
block_repeats = cast_tuple(block_repeats, num_hierarchies)
|
|
|
|
self.layers = nn.ModuleList([])
|
|
|
|
for level, heads, (dim_in, dim_out), block_repeat in zip(hierarchies, layer_heads, dim_pairs, block_repeats):
|
|
is_last = level == 0
|
|
depth = block_repeat
|
|
|
|
self.layers.append(nn.ModuleList([
|
|
Transformer(dim_in, seq_len, depth, heads, mlp_mult, dropout),
|
|
Aggregate(dim_in, dim_out) if not is_last else nn.Identity()
|
|
]))
|
|
|
|
|
|
self.mlp_head = nn.Sequential(
|
|
LayerNorm(last_dim),
|
|
Reduce('b c h w -> b c', 'mean'),
|
|
nn.Linear(last_dim, num_classes)
|
|
)
|
|
|
|
def forward(self, img):
|
|
x = self.to_patch_embedding(img)
|
|
b, c, h, w = x.shape
|
|
|
|
num_hierarchies = len(self.layers)
|
|
|
|
for level, (transformer, aggregate) in zip(reversed(range(num_hierarchies)), self.layers):
|
|
block_size = 2 ** level
|
|
x = rearrange(x, 'b c (b1 h) (b2 w) -> (b b1 b2) c h w', b1 = block_size, b2 = block_size)
|
|
x = transformer(x)
|
|
x = rearrange(x, '(b b1 b2) c h w -> b c (b1 h) (b2 w)', b1 = block_size, b2 = block_size)
|
|
x = aggregate(x)
|
|
|
|
return self.mlp_head(x)
|