mirror of
https://github.com/lucidrains/vit-pytorch.git
synced 2025-12-30 08:02:29 +00:00
179 lines
5.5 KiB
Python
179 lines
5.5 KiB
Python
from random import randrange
|
|
import torch
|
|
from torch import nn, einsum
|
|
import torch.nn.functional as F
|
|
|
|
from einops import rearrange, repeat
|
|
from einops.layers.torch import Rearrange
|
|
|
|
# helpers
|
|
|
|
def exists(val):
|
|
return val is not None
|
|
|
|
def dropout_layers(layers, dropout):
|
|
if dropout == 0:
|
|
return layers
|
|
|
|
num_layers = len(layers)
|
|
to_drop = torch.zeros(num_layers).uniform_(0., 1.) < dropout
|
|
|
|
# make sure at least one layer makes it
|
|
if all(to_drop):
|
|
rand_index = randrange(num_layers)
|
|
to_drop[rand_index] = False
|
|
|
|
layers = [layer for (layer, drop) in zip(layers, to_drop) if not drop]
|
|
return layers
|
|
|
|
# classes
|
|
|
|
class LayerScale(nn.Module):
|
|
def __init__(self, dim, fn, depth):
|
|
super().__init__()
|
|
if depth <= 18: # epsilon detailed in section 2 of paper
|
|
init_eps = 0.1
|
|
elif depth > 18 and depth <= 24:
|
|
init_eps = 1e-5
|
|
else:
|
|
init_eps = 1e-6
|
|
|
|
scale = torch.zeros(1, 1, dim).fill_(init_eps)
|
|
self.scale = nn.Parameter(scale)
|
|
self.fn = fn
|
|
def forward(self, x, **kwargs):
|
|
return self.fn(x, **kwargs) * self.scale
|
|
|
|
class FeedForward(nn.Module):
|
|
def __init__(self, dim, hidden_dim, dropout = 0.):
|
|
super().__init__()
|
|
self.net = nn.Sequential(
|
|
nn.LayerNorm(dim),
|
|
nn.Linear(dim, hidden_dim),
|
|
nn.GELU(),
|
|
nn.Dropout(dropout),
|
|
nn.Linear(hidden_dim, dim),
|
|
nn.Dropout(dropout)
|
|
)
|
|
def forward(self, x):
|
|
return self.net(x)
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
|
|
super().__init__()
|
|
inner_dim = dim_head * heads
|
|
self.heads = heads
|
|
self.scale = dim_head ** -0.5
|
|
|
|
self.norm = nn.LayerNorm(dim)
|
|
self.to_q = nn.Linear(dim, inner_dim, bias = False)
|
|
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
|
|
|
|
self.attend = nn.Softmax(dim = -1)
|
|
self.dropout = nn.Dropout(dropout)
|
|
|
|
self.mix_heads_pre_attn = nn.Parameter(torch.randn(heads, heads))
|
|
self.mix_heads_post_attn = nn.Parameter(torch.randn(heads, heads))
|
|
|
|
self.to_out = nn.Sequential(
|
|
nn.Linear(inner_dim, dim),
|
|
nn.Dropout(dropout)
|
|
)
|
|
|
|
def forward(self, x, context = None):
|
|
b, n, _, h = *x.shape, self.heads
|
|
|
|
x = self.norm(x)
|
|
context = x if not exists(context) else torch.cat((x, context), dim = 1)
|
|
|
|
qkv = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1))
|
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)
|
|
|
|
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
|
|
|
|
dots = einsum('b h i j, h g -> b g i j', dots, self.mix_heads_pre_attn) # talking heads, pre-softmax
|
|
|
|
attn = self.attend(dots)
|
|
attn = self.dropout(attn)
|
|
|
|
attn = einsum('b h i j, h g -> b g i j', attn, self.mix_heads_post_attn) # talking heads, post-softmax
|
|
|
|
out = einsum('b h i j, b h j d -> b h i d', attn, v)
|
|
out = rearrange(out, 'b h n d -> b n (h d)')
|
|
return self.to_out(out)
|
|
|
|
class Transformer(nn.Module):
|
|
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0., layer_dropout = 0.):
|
|
super().__init__()
|
|
self.layers = nn.ModuleList([])
|
|
self.layer_dropout = layer_dropout
|
|
|
|
for ind in range(depth):
|
|
self.layers.append(nn.ModuleList([
|
|
LayerScale(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout), depth = ind + 1),
|
|
LayerScale(dim, FeedForward(dim, mlp_dim, dropout = dropout), depth = ind + 1)
|
|
]))
|
|
def forward(self, x, context = None):
|
|
layers = dropout_layers(self.layers, dropout = self.layer_dropout)
|
|
|
|
for attn, ff in layers:
|
|
x = attn(x, context = context) + x
|
|
x = ff(x) + x
|
|
return x
|
|
|
|
class CaiT(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
image_size,
|
|
patch_size,
|
|
num_classes,
|
|
dim,
|
|
depth,
|
|
cls_depth,
|
|
heads,
|
|
mlp_dim,
|
|
dim_head = 64,
|
|
dropout = 0.,
|
|
emb_dropout = 0.,
|
|
layer_dropout = 0.
|
|
):
|
|
super().__init__()
|
|
assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.'
|
|
num_patches = (image_size // patch_size) ** 2
|
|
patch_dim = 3 * patch_size ** 2
|
|
|
|
self.to_patch_embedding = nn.Sequential(
|
|
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size),
|
|
nn.LayerNorm(patch_dim),
|
|
nn.Linear(patch_dim, dim),
|
|
nn.LayerNorm(dim)
|
|
)
|
|
|
|
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches, dim))
|
|
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
|
|
|
|
self.dropout = nn.Dropout(emb_dropout)
|
|
|
|
self.patch_transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout, layer_dropout)
|
|
self.cls_transformer = Transformer(dim, cls_depth, heads, dim_head, mlp_dim, dropout, layer_dropout)
|
|
|
|
self.mlp_head = nn.Sequential(
|
|
nn.LayerNorm(dim),
|
|
nn.Linear(dim, num_classes)
|
|
)
|
|
|
|
def forward(self, img):
|
|
x = self.to_patch_embedding(img)
|
|
b, n, _ = x.shape
|
|
|
|
x += self.pos_embedding[:, :n]
|
|
x = self.dropout(x)
|
|
|
|
x = self.patch_transformer(x)
|
|
|
|
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
|
|
x = self.cls_transformer(cls_tokens, context = x)
|
|
|
|
return self.mlp_head(x[:, 0])
|