Files
vit-pytorch/vit_pytorch/xcit.py
Phil Wang 1616288e30 add xcit (#284)
* add xcit

* use Rearrange layers

* give cross correlation transformer a final norm at end

* document
2023-10-13 09:15:13 -07:00

284 lines
8.3 KiB
Python

from random import randrange
import torch
from torch import nn, einsum
from torch.nn import Module, ModuleList
import torch.nn.functional as F
from einops import rearrange, repeat, pack, unpack
from einops.layers.torch import Rearrange
# helpers
def exists(val):
return val is not None
def pack_one(t, pattern):
return pack([t], pattern)
def unpack_one(t, ps, pattern):
return unpack(t, ps, pattern)[0]
def l2norm(t):
return F.normalize(t, dim = -1, p = 2)
def dropout_layers(layers, dropout):
if dropout == 0:
return layers
num_layers = len(layers)
to_drop = torch.zeros(num_layers).uniform_(0., 1.) < dropout
# make sure at least one layer makes it
if all(to_drop):
rand_index = randrange(num_layers)
to_drop[rand_index] = False
layers = [layer for (layer, drop) in zip(layers, to_drop) if not drop]
return layers
# classes
class LayerScale(Module):
def __init__(self, dim, fn, depth):
super().__init__()
if depth <= 18:
init_eps = 0.1
elif 18 > depth <= 24:
init_eps = 1e-5
else:
init_eps = 1e-6
self.fn = fn
self.scale = nn.Parameter(torch.full((dim,), init_eps))
def forward(self, x, **kwargs):
return self.fn(x, **kwargs) * self.scale
class FeedForward(Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.to_q = nn.Linear(dim, inner_dim, bias = False)
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x, context = None):
h = self.heads
x = self.norm(x)
context = x if not exists(context) else torch.cat((x, context), dim = 1)
qkv = (self.to_q(x), *self.to_kv(context).chunk(2, dim = -1))
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)
sim = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
attn = self.attend(sim)
attn = self.dropout(attn)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class XCAttention(Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
self.heads = heads
self.norm = nn.LayerNorm(dim)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.temperature = nn.Parameter(torch.ones(heads, 1, 1))
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
h = self.heads
x, ps = pack_one(x, 'b * d')
x = self.norm(x)
q, k, v = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h d n', h = h), (q, k, v))
q, k = map(l2norm, (q, k))
sim = einsum('b h i n, b h j n -> b h i j', q, k) * self.temperature.exp()
attn = self.attend(sim)
attn = self.dropout(attn)
out = einsum('b h i j, b h j n -> b h i n', attn, v)
out = rearrange(out, 'b h d n -> b n (h d)')
out = unpack_one(out, ps, 'b * d')
return self.to_out(out)
class LocalPatchInteraction(Module):
def __init__(self, dim, kernel_size = 3):
super().__init__()
assert (kernel_size % 2) == 1
padding = kernel_size // 2
self.net = nn.Sequential(
nn.LayerNorm(dim),
Rearrange('b h w c -> b c h w'),
nn.Conv2d(dim, dim, kernel_size, padding = padding, groups = dim),
nn.BatchNorm2d(dim),
nn.GELU(),
nn.Conv2d(dim, dim, kernel_size, padding = padding, groups = dim),
Rearrange('b c h w -> b h w c'),
)
def forward(self, x):
return self.net(x)
class Transformer(Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0., layer_dropout = 0.):
super().__init__()
self.layers = ModuleList([])
self.layer_dropout = layer_dropout
for ind in range(depth):
layer = ind + 1
self.layers.append(ModuleList([
LayerScale(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout), depth = layer),
LayerScale(dim, FeedForward(dim, mlp_dim, dropout = dropout), depth = layer)
]))
def forward(self, x, context = None):
layers = dropout_layers(self.layers, dropout = self.layer_dropout)
for attn, ff in layers:
x = attn(x, context = context) + x
x = ff(x) + x
return x
class XCATransformer(Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, local_patch_kernel_size = 3, dropout = 0., layer_dropout = 0.):
super().__init__()
self.layers = ModuleList([])
self.layer_dropout = layer_dropout
for ind in range(depth):
layer = ind + 1
self.layers.append(ModuleList([
LayerScale(dim, XCAttention(dim, heads = heads, dim_head = dim_head, dropout = dropout), depth = layer),
LayerScale(dim, LocalPatchInteraction(dim, local_patch_kernel_size), depth = layer),
LayerScale(dim, FeedForward(dim, mlp_dim, dropout = dropout), depth = layer)
]))
def forward(self, x):
layers = dropout_layers(self.layers, dropout = self.layer_dropout)
for cross_covariance_attn, local_patch_interaction, ff in layers:
x = cross_covariance_attn(x) + x
x = local_patch_interaction(x) + x
x = ff(x) + x
return x
class XCiT(Module):
def __init__(
self,
*,
image_size,
patch_size,
num_classes,
dim,
depth,
cls_depth,
heads,
mlp_dim,
dim_head = 64,
dropout = 0.,
emb_dropout = 0.,
local_patch_kernel_size = 3,
layer_dropout = 0.
):
super().__init__()
assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_size // patch_size) ** 2
patch_dim = 3 * patch_size ** 2
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b h w (p1 p2 c)', p1 = patch_size, p2 = patch_size),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim)
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches, dim))
self.cls_token = nn.Parameter(torch.randn(dim))
self.dropout = nn.Dropout(emb_dropout)
self.xcit_transformer = XCATransformer(dim, depth, heads, dim_head, mlp_dim, local_patch_kernel_size, dropout, layer_dropout)
self.final_norm = nn.LayerNorm(dim)
self.cls_transformer = Transformer(dim, cls_depth, heads, dim_head, mlp_dim, dropout, layer_dropout)
self.mlp_head = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, num_classes)
)
def forward(self, img):
x = self.to_patch_embedding(img)
x, ps = pack_one(x, 'b * d')
b, n, _ = x.shape
x += self.pos_embedding[:, :n]
x = unpack_one(x, ps, 'b * d')
x = self.dropout(x)
x = self.xcit_transformer(x)
x = self.final_norm(x)
cls_tokens = repeat(self.cls_token, 'd -> b 1 d', b = b)
x = rearrange(x, 'b ... d -> b (...) d')
cls_tokens = self.cls_transformer(cls_tokens, context = x)
return self.mlp_head(cls_tokens[:, 0])