Files
vit-pytorch/vit_pytorch/vit_pytorch.py
2020-10-04 14:55:29 -07:00

101 lines
3.1 KiB
Python

import torch
from einops import rearrange
import torch.nn.functional as F
from torch import nn
class Residual(nn.Module):
def __init__(self, fn):
super().__init__()
self.fn = fn
def forward(self, x):
return self.fn(x) + x
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x):
return self.fn(self.norm(x))
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, dim)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8):
super().__init__()
self.heads = heads
self.scale = dim ** -0.5
self.to_qkv = nn.Linear(dim, dim * 3, bias = False)
self.to_out = nn.Linear(dim, dim)
def forward(self, x):
b, n, _, h = *x.shape, self.heads
qkv = self.to_qkv(x)
q, k, v = rearrange(qkv, 'b n (qkv h d) -> qkv b h n d', qkv = 3, h = h)
dots = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale
attn = dots.softmax(dim=-1)
out = torch.einsum('bhij,bhjd->bhid', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
out = self.to_out(out)
return out
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, mlp_dim):
super().__init__()
layers = []
for _ in range(depth):
layers.extend([
Residual(PreNorm(dim, Attention(dim, heads = heads))),
Residual(PreNorm(dim, FeedForward(dim, mlp_dim)))
])
self.net = nn.Sequential(*layers)
def forward(self, x):
return self.net(x)
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, channels = 3):
super().__init__()
assert image_size % patch_size == 0, 'image dimensions must be divisible by the patch size'
num_patches = (image_size // patch_size) ** 2
patch_dim = channels * patch_size ** 2
self.patch_size = patch_size
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.patch_to_embedding = nn.Linear(patch_dim, dim)
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.transformer = Transformer(dim, depth, heads, mlp_dim)
self.to_cls_token = nn.Identity()
self.mlp_head = nn.Sequential(
nn.Linear(dim, mlp_dim),
nn.GELU(),
nn.Linear(mlp_dim, num_classes)
)
def forward(self, img):
p = self.patch_size
x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p)
x = self.patch_to_embedding(x)
cls_tokens = self.cls_token.expand(img.shape[0], -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding
x = self.transformer(x)
x = self.to_cls_token(x[:, 0])
return self.mlp_head(x)