mirror of
https://github.com/lucidrains/vit-pytorch.git
synced 2025-12-30 16:12:29 +00:00
50 lines
1.8 KiB
Python
50 lines
1.8 KiB
Python
import torch
|
|
from torch import nn
|
|
from einops import rearrange, repeat
|
|
from einops.layers.torch import Rearrange
|
|
|
|
def pair(t):
|
|
return t if isinstance(t, tuple) else (t, t)
|
|
|
|
class ViT(nn.Module):
|
|
def __init__(self, *, image_size, patch_size, num_classes, dim, transformer, pool = 'cls', channels = 3):
|
|
super().__init__()
|
|
image_size_h, image_size_w = pair(image_size)
|
|
assert image_size_h % patch_size == 0 and image_size_w % patch_size == 0, 'image dimensions must be divisible by the patch size'
|
|
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
|
|
num_patches = (image_size_h // patch_size) * (image_size_w // patch_size)
|
|
patch_dim = channels * patch_size ** 2
|
|
|
|
self.to_patch_embedding = nn.Sequential(
|
|
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_size, p2 = patch_size),
|
|
nn.LayerNorm(patch_dim),
|
|
nn.Linear(patch_dim, dim),
|
|
nn.LayerNorm(dim)
|
|
)
|
|
|
|
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
|
|
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
|
|
self.transformer = transformer
|
|
|
|
self.pool = pool
|
|
self.to_latent = nn.Identity()
|
|
|
|
self.mlp_head = nn.Sequential(
|
|
nn.LayerNorm(dim),
|
|
nn.Linear(dim, num_classes)
|
|
)
|
|
|
|
def forward(self, img):
|
|
x = self.to_patch_embedding(img)
|
|
b, n, _ = x.shape
|
|
|
|
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b)
|
|
x = torch.cat((cls_tokens, x), dim=1)
|
|
x += self.pos_embedding[:, :(n + 1)]
|
|
x = self.transformer(x)
|
|
|
|
x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0]
|
|
|
|
x = self.to_latent(x)
|
|
return self.mlp_head(x)
|