Files
vit-pytorch/vit_pytorch/mpp.py
Phil Wang 9e3fec2398 fix mpp
2023-06-28 08:02:43 -07:00

176 lines
5.8 KiB
Python

import math
import torch
from torch import nn
import torch.nn.functional as F
from einops import rearrange, repeat, reduce
# helpers
def exists(val):
return val is not None
def prob_mask_like(t, prob):
batch, seq_length, _ = t.shape
return torch.zeros((batch, seq_length)).float().uniform_(0, 1) < prob
def get_mask_subset_with_prob(patched_input, prob):
batch, seq_len, _, device = *patched_input.shape, patched_input.device
max_masked = math.ceil(prob * seq_len)
rand = torch.rand((batch, seq_len), device=device)
_, sampled_indices = rand.topk(max_masked, dim=-1)
new_mask = torch.zeros((batch, seq_len), device=device)
new_mask.scatter_(1, sampled_indices, 1)
return new_mask.bool()
# mpp loss
class MPPLoss(nn.Module):
def __init__(
self,
patch_size,
channels,
output_channel_bits,
max_pixel_val,
mean,
std
):
super().__init__()
self.patch_size = patch_size
self.channels = channels
self.output_channel_bits = output_channel_bits
self.max_pixel_val = max_pixel_val
self.mean = torch.tensor(mean).view(-1, 1, 1) if mean else None
self.std = torch.tensor(std).view(-1, 1, 1) if std else None
def forward(self, predicted_patches, target, mask):
p, c, mpv, bits, device = self.patch_size, self.channels, self.max_pixel_val, self.output_channel_bits, target.device
bin_size = mpv / (2 ** bits)
# un-normalize input
if exists(self.mean) and exists(self.std):
target = target * self.std + self.mean
# reshape target to patches
target = target.clamp(max = mpv) # clamp just in case
avg_target = reduce(target, 'b c (h p1) (w p2) -> b (h w) c', 'mean', p1 = p, p2 = p).contiguous()
channel_bins = torch.arange(bin_size, mpv, bin_size, device = device)
discretized_target = torch.bucketize(avg_target, channel_bins)
bin_mask = (2 ** bits) ** torch.arange(0, c, device = device).long()
bin_mask = rearrange(bin_mask, 'c -> () () c')
target_label = torch.sum(bin_mask * discretized_target, dim = -1)
loss = F.cross_entropy(predicted_patches[mask], target_label[mask])
return loss
# main class
class MPP(nn.Module):
def __init__(
self,
transformer,
patch_size,
dim,
output_channel_bits=3,
channels=3,
max_pixel_val=1.0,
mask_prob=0.15,
replace_prob=0.5,
random_patch_prob=0.5,
mean=None,
std=None
):
super().__init__()
self.transformer = transformer
self.loss = MPPLoss(patch_size, channels, output_channel_bits,
max_pixel_val, mean, std)
# extract patching function
self.patch_to_emb = nn.Sequential(transformer.to_patch_embedding[1:])
# output transformation
self.to_bits = nn.Linear(dim, 2**(output_channel_bits * channels))
# vit related dimensions
self.patch_size = patch_size
# mpp related probabilities
self.mask_prob = mask_prob
self.replace_prob = replace_prob
self.random_patch_prob = random_patch_prob
# token ids
self.mask_token = nn.Parameter(torch.randn(1, 1, channels * patch_size ** 2))
def forward(self, input, **kwargs):
transformer = self.transformer
# clone original image for loss
img = input.clone().detach()
# reshape raw image to patches
p = self.patch_size
input = rearrange(input,
'b c (h p1) (w p2) -> b (h w) (p1 p2 c)',
p1=p,
p2=p)
mask = get_mask_subset_with_prob(input, self.mask_prob)
# mask input with mask patches with probability of `replace_prob` (keep patches the same with probability 1 - replace_prob)
masked_input = input.clone().detach()
# if random token probability > 0 for mpp
if self.random_patch_prob > 0:
random_patch_sampling_prob = self.random_patch_prob / (
1 - self.replace_prob)
random_patch_prob = prob_mask_like(input,
random_patch_sampling_prob).to(mask.device)
bool_random_patch_prob = mask * (random_patch_prob == True)
random_patches = torch.randint(0,
input.shape[1],
(input.shape[0], input.shape[1]),
device=input.device)
randomized_input = masked_input[
torch.arange(masked_input.shape[0]).unsqueeze(-1),
random_patches]
masked_input[bool_random_patch_prob] = randomized_input[
bool_random_patch_prob]
# [mask] input
replace_prob = prob_mask_like(input, self.replace_prob).to(mask.device)
bool_mask_replace = (mask * replace_prob) == True
masked_input[bool_mask_replace] = self.mask_token
# linear embedding of patches
masked_input = self.patch_to_emb(masked_input)
# add cls token to input sequence
b, n, _ = masked_input.shape
cls_tokens = repeat(transformer.cls_token, '() n d -> b n d', b=b)
masked_input = torch.cat((cls_tokens, masked_input), dim=1)
# add positional embeddings to input
masked_input += transformer.pos_embedding[:, :(n + 1)]
masked_input = transformer.dropout(masked_input)
# get generator output and get mpp loss
masked_input = transformer.transformer(masked_input, **kwargs)
cls_logits = self.to_bits(masked_input)
logits = cls_logits[:, 1:, :]
mpp_loss = self.loss(logits, img, mask)
return mpp_loss