Files
vit-pytorch/vit_pytorch/vivit.py
roydenwa 9d43e4d0bb Add ViViT variant with factorized self-attention (#327)
* Add FactorizedTransformer

* Add variant param and check in fwd method

* Check if variant is implemented

* Describe new ViViT variant
2024-08-21 19:23:38 -07:00

215 lines
7.4 KiB
Python

import torch
from torch import nn
from einops import rearrange, repeat, reduce
from einops.layers.torch import Rearrange
# helpers
def exists(val):
return val is not None
def pair(t):
return t if isinstance(t, tuple) else (t, t)
# classes
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
) if project_out else nn.Identity()
def forward(self, x):
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout),
FeedForward(dim, mlp_dim, dropout = dropout)
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return self.norm(x)
class FactorizedTransformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout),
Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout),
FeedForward(dim, mlp_dim, dropout = dropout)
]))
def forward(self, x):
b, f, n, _ = x.shape
for spatial_attn, temporal_attn, ff in self.layers:
x = rearrange(x, 'b f n d -> (b f) n d')
x = spatial_attn(x) + x
x = rearrange(x, '(b f) n d -> (b n) f d', b=b, f=f)
x = temporal_attn(x) + x
x = ff(x) + x
x = rearrange(x, '(b n) f d -> b f n d', b=b, n=n)
return self.norm(x)
class ViT(nn.Module):
def __init__(
self,
*,
image_size,
image_patch_size,
frames,
frame_patch_size,
num_classes,
dim,
spatial_depth,
temporal_depth,
heads,
mlp_dim,
pool = 'cls',
channels = 3,
dim_head = 64,
dropout = 0.,
emb_dropout = 0.,
variant = 'factorized_encoder',
):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(image_patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
assert frames % frame_patch_size == 0, 'Frames must be divisible by frame patch size'
assert variant in ('factorized_encoder', 'factorized_self_attention'), f'variant = {variant} is not implemented'
num_image_patches = (image_height // patch_height) * (image_width // patch_width)
num_frame_patches = (frames // frame_patch_size)
patch_dim = channels * patch_height * patch_width * frame_patch_size
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
self.global_average_pool = pool == 'mean'
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (f pf) (h p1) (w p2) -> b f (h w) (p1 p2 pf c)', p1 = patch_height, p2 = patch_width, pf = frame_patch_size),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim)
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_frame_patches, num_image_patches, dim))
self.dropout = nn.Dropout(emb_dropout)
self.spatial_cls_token = nn.Parameter(torch.randn(1, 1, dim)) if not self.global_average_pool else None
if variant == 'factorized_encoder':
self.temporal_cls_token = nn.Parameter(torch.randn(1, 1, dim)) if not self.global_average_pool else None
self.spatial_transformer = Transformer(dim, spatial_depth, heads, dim_head, mlp_dim, dropout)
self.temporal_transformer = Transformer(dim, temporal_depth, heads, dim_head, mlp_dim, dropout)
elif variant == 'factorized_self_attention':
assert spatial_depth == temporal_depth, 'Spatial and temporal depth must be the same for factorized self-attention'
self.factorized_transformer = FactorizedTransformer(dim, spatial_depth, heads, dim_head, mlp_dim, dropout)
self.pool = pool
self.to_latent = nn.Identity()
self.mlp_head = nn.Linear(dim, num_classes)
self.variant = variant
def forward(self, video):
x = self.to_patch_embedding(video)
b, f, n, _ = x.shape
x = x + self.pos_embedding[:, :f, :n]
if exists(self.spatial_cls_token):
spatial_cls_tokens = repeat(self.spatial_cls_token, '1 1 d -> b f 1 d', b = b, f = f)
x = torch.cat((spatial_cls_tokens, x), dim = 2)
x = self.dropout(x)
if self.variant == 'factorized_encoder':
x = rearrange(x, 'b f n d -> (b f) n d')
# attend across space
x = self.spatial_transformer(x)
x = rearrange(x, '(b f) n d -> b f n d', b = b)
# excise out the spatial cls tokens or average pool for temporal attention
x = x[:, :, 0] if not self.global_average_pool else reduce(x, 'b f n d -> b f d', 'mean')
# append temporal CLS tokens
if exists(self.temporal_cls_token):
temporal_cls_tokens = repeat(self.temporal_cls_token, '1 1 d-> b 1 d', b = b)
x = torch.cat((temporal_cls_tokens, x), dim = 1)
# attend across time
x = self.temporal_transformer(x)
# excise out temporal cls token or average pool
x = x[:, 0] if not self.global_average_pool else reduce(x, 'b f d -> b d', 'mean')
elif self.variant == 'factorized_self_attention':
x = self.factorized_transformer(x)
x = x[:, 0, 0] if not self.global_average_pool else reduce(x, 'b f n d -> b d', 'mean')
x = self.to_latent(x)
return self.mlp_head(x)